Temperature dependence and correlation of initial microstructural defects and breaking
- Corresponding author: Jian-Wei ZHAO, jwzhao@zjxu.edu.cn Jin HOU, jhou@swjtu.edu.cn
Citation: Jian-Wei ZHAO, Kun-Yan SHEN, Xiao-Hui YU, Jin HOU. Temperature dependence and correlation of initial microstructural defects and breaking[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1193-1207. doi: 10.11862/CJIC.2023.075
Francis M K, Sahu B K, Bhargav P B, Balaji C, Ahmed N, Das A, Dhara S. Ag nanowires based SERS substrates with very high enhancement factor[J]. Phys. E, 2022,137115080. doi: 10.1016/j.physe.2021.115080
Li H L, Ding J W, Cai S F, Zhang W, Zhang X N, Wu T, Wang C, Foss M, Yang R. Plasmon-enhanced photocatalytic properties of Au/ZnO nanowires[J]. Appl. Surf. Sci., 2022,583152539. doi: 10.1016/j.apsusc.2022.152539
Lee J K, Kim B O, Park J, Kim J B, Kang I S, Sim G, Park J H, Jang H I. A bilayer Al nanowire-grid polarizer integrated with an IR-cut filter[J]. Opt. Mater., 2019,98109409. doi: 10.1016/j.optmat.2019.109409
Yu S H, Liu Z W, Zhao L, Gong B M. High-performance flexible transparent conductive tape based on copper nanowires[J]. Opt. Mater., 2021,119111301. doi: 10.1016/j.optmat.2021.111301
Yin C G, Liu Z J, Mo R, Fan J C, Shi P H, Xu Q J, Min Y L. Copper nanowires embedded in boron nitride nanosheet-polymer composites with enhanced thermal conductivities for thermal management[J]. Polymer, 2020,195122455. doi: 10.1016/j.polymer.2020.122455
Guo Z G, Sun C, Zhao J, Cai Z S, Ge F Y. Low-voltage electrical heater based on one-step fabrication of conductive Cu nanowire networks for application in wearable device[J]. Adv. Mater. Interfaces, 2021,8(3)2001695. doi: 10.1002/admi.202001695
Patella B, Russo R R, O′Riordan A, Aiello G, Sunseri C, Inguanta R. Copper nanowire array as highly selective electrochemical sensor of nitrate ions in water[J]. Talanta, 2021,221121643. doi: 10.1016/j.talanta.2020.121643
Yang J P, Yu F Y, Chen A, Zhao S W, Zhao Y, Zhang S S, Sun T, Hu G Z. Synthesis and application of silver and copper nanowires in high transparent solar cells[J]. Adv. Powder Mater., 2022,1(4)100045. doi: 10.1016/j.apmate.2022.100045
Li D D, Lai W Y, Zhang Y Z, Huang W. Printable transparent conductive films for flexible electronics[J]. Adv. Mater., 2018,30(10)1704738. doi: 10.1002/adma.201704738
Xie H X, Yin F X, Yu T, Lu G H, Zhang Y G. A new strain-rate-induced deformation mechanism of Cu nanowire: Transition from dislocation nucleation to phase transformation[J]. Acta Mater., 2015,85:191-198. doi: 10.1016/j.actamat.2014.11.017
Li X Q, Minor A M. Precise measurement of activation parameters for individual dislocation nucleation during in situ TEM tensile testing of single crystal nickel[J]. Scr. Mater., 2021,197113764. doi: 10.1016/j.scriptamat.2021.113764
Wang L H, Zhang Y, Zeng Z, Zhou H, He J, Liu P, Chen M W, Han J, Srolovitz D J, Teng J. Tracking the sliding of grain boundaries at the atomic scale[J]. Science, 2022,375(6586)1261. doi: 10.1126/science.abm2612
Yu Y F, Cui J Z. Elastic - plastic deformation decomposition algorithm for metal clusters at the atomic scale[J]. Comput. Mech., 2021,67:567-581. doi: 10.1007/s00466-020-01948-5
Guder V, Sengul S. Tensile strength and failure mechanism of hcp zirconium nanowires: Effect of diameter, temperature and strain rate[J]. Comput. Mater. Sci., 2020,177109551. doi: 10.1016/j.commatsci.2020.109551
Traiviratana S, Bringab E M, Benson D J, Meyers M A. Void growth in metals: Atomistic calculations[J]. Acta Mater., 2008,56(15):3874-3886. doi: 10.1016/j.actamat.2008.03.047
Yang Z, Huang Y H, Ma F, Sun Y J, Xu K W, Chu P K. Size-dependent deformation behavior of nanocrystalline graphene sheets[J]. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 2015,198:95-101. doi: 10.1016/j.mseb.2015.03.019
Ritter Y, Şopu D, Gleiter H, Albe K. Structure, stability and mechanical properties of internal interfaces in Cu64Zr36 nanoglasses studied by MD simulations[J]. Acta Mater., 2011,59(17):6588-6593. doi: 10.1016/j.actamat.2011.07.013
Tang Y Z, Bringa E M, Meyers M A. Ductile tensile failure in metals through initiation and growth of nanosized voids[J]. Acta Mater., 2012,60(12):4856-4865. doi: 10.1016/j.actamat.2012.05.030
Cheng N, Chen F, Li R, Durkan C, Wang N, Zhao J W. Correlation between the microstructure and the deformation behaviour of metallic nanowires[J]. Comput. Mater. Sci., 2019,168:116-124. doi: 10.1016/j.commatsci.2019.06.003
Pang W W, Yu S Y, Lin Z J, Zhao Y Z, Yin F X. Effects of crystal orientation and temperature on the deformation mechanism and mechanical property of Cu nanowire[J]. Micro Nano Lett., 2020,15(4):261-265. doi: 10.1049/mnl.2019.0559
Yoon J, Jang Y, Kim K, Kim J, Son S, Lee Z. In situ tensile and fracture behavior of monolithic ultra - thin amorphous carbon in TEM[J]. Carbon, 2022,196:236-242. doi: 10.1016/j.carbon.2022.04.062
Liu Z L, Yuan X M, Wang S L, Liu S, Tan H H, Jagadish C. Nanomechanical behavior of single taper-free GaAs nanowires unravelled by in-situ TEM mechanical testing and molecular dynamics simulation[J]. Mater. Sci. Eng. A - Struct. Mater. Prop. Microstruct. Process., 2021,806140866. doi: 10.1016/j.msea.2021.140866
Song B, Loya P, Shen L L, Sui C, He L, Guo H, Guo W H, Rodrigues Marco T F, Dong P, Wang C, He X D, Ajayan P M, Lou J. Quantitative in situ fracture testing of tin oxide nanowires for lithium ion battery applications[J]. Nano Energy, 2018,53:277-285. doi: 10.1016/j.nanoen.2018.08.057
Li P T, Yang Y Q, Koval V, Luo X, Chen J X, Zhang W, Lin E E, Wang B W, Yan H X. Temperature-dependent deformation in silver-particle - covered copper nanowires by molecular dynamics simulation[J]. J. Materiomics, 2022,8(68)78.
Wang F Y, Sun W, Gao Y J, Liu Y H, Zhao J W, Sun C Q. Investigation on the most probable breaking behaviors of copper nanowires with the dependence of temperature[J]. Comput. Mater. Sci., 2013,67:182-187. doi: 10.1016/j.commatsci.2012.07.048
Liu Y H, Zhao J W. The size dependence of the mechanical properties and breaking behavior of metallic nanowires: A statistical description[J]. Comput. Mater. Sci., 2011,50(4):1418-1424. doi: 10.1016/j.commatsci.2010.11.026
Wang D X, Zhao J W, Hu S, Yin X, Liang S, Liu Y H, Deng S Y. Where, and how, does a nanowire break?[J]. Nano Lett., 2007,7(5):1208-1212. doi: 10.1021/nl0629512
Cui Y, Toku Y, Kimura Y, Ju Y. The deformation mechanism in cold-welded gold nanowires due to dislocation emission[J]. Comput. Mater. Sci., 2021,188110214. doi: 10.1016/j.commatsci.2020.110214
Shen K Y, Cheng N, Zhao J W, Hou J. Correlation between the breaking behavior and the initial microstructural defects of the metallic nanowires: An approach from statistical analysis[J]. Comput. Mater. Sci., 2022,213111486. doi: 10.1016/j.commatsci.2022.111486
Niu S C, Chang X T, Zhu Z H, Qin Z W, Li J F, Jiang Y C, Wang D S, Yang C X, Gao Y, Sun S B. Low-temperature wearable strain sensor based on a silver nanowires/graphene composite with a near-zero temperature coefficient of resistance[J]. ACS Appl. Mater. Interfaces, 2021,13(46):55307-55318. doi: 10.1021/acsami.1c14671
Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations[J]. Phys. Rev. B, 1999,59:3393-3407. doi: 10.1103/PhysRevB.59.3393
Johnson R A. Relationship between defect energies and embedded-atom-method parameters[J]. Phys. Rev. B, 1988,376121. doi: 10.1103/PhysRevB.37.6121
Johnson R A. Alloy models with the embedded-atom method[J]. Phys. Rev. B, 1989,3912554. doi: 10.1103/PhysRevB.39.12554
Sun Y L, Sun W, Fu Y Q, Wang F Y, Gao Y J, Zhao J W. The deformation behaviors of silver nanowires including 3D defects under tension[J]. Comput. Mater. Sci., 2013,79:63-68. doi: 10.1016/j.commatsci.2013.06.004
LI R, ZHAO J W, HOU J, HE Y Y, CHENG N. Effect of the convex and the concave microstructures in the metallic nanowires on the initial deformation behavior[J]. Chem. J. Chinese Universities, 2018,39(3):514-520.
Zhao J W, Yin X, Liang S, Liu Y H, Wang D X, Deng S Y, Hou J. Ultra-large scale molecular dynamics simulation for nano-engineering[J]. Chem. Res. Chin. Univ., 2008,24(3):367-370. doi: 10.1016/S1005-9040(08)60077-X
Morales J J, Rull L F, Toxvaerd S. Efficiency test of the traditonal MD and the link - cell methods, computer physics communications[J]. Comput. Phys. Commun., 1989,56(2):129-134. doi: 10.1016/0010-4655(89)90013-1
Hockney R W, Eastwood J W. Computer simulation using particles[J]. SIAM Rev., 1983,25(3):425-426. doi: 10.1137/1025102
Wu H A. Molecular dynamics study of the mechanics of metal nanowires at finite temperature[J]. Eur. J. Mech. A-Solids, 2006,25(2):370-377. doi: 10.1016/j.euromechsol.2005.11.008
Foiles S M, Baskes M I, Daw M S. Embedded- atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys[J]. Phys. Rev. B, 1988,37(17)10378.
Rapaport D C. The art of molecular dynamics simulation. 2nd ed. Cambridge: Cambridge University Press, 2004.
Kelchner C L, Plimpton S J, Hamilton J C. Dislocation nucleation and defect structure during surface indentation[J]. Phys. Rev. B, 1998,58:11085-11088. doi: 10.1103/PhysRevB.58.11085
Ester M, Kriegel H P, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996: 226-231
Li J G, Lei X, Ding J H, Gao Z X, Wang H, Shi Y L. Surface effect on size dependent Young′s modulus of nanowires: Exponentially decreased surface elasticity model[J]. Mater. Lett., 2022,307131001. doi: 10.1016/j.matlet.2021.131001
So S H, Jang J H, Sung S J, Yang S J, Nam K T, Park C R. Demonstration of the nanosize effect of carbon nanomaterials on the dehydrogenation temperature of ammonia borane[J]. Nanoscale Adv., 2019,1:4697-4703. doi: 10.1039/C9NA00501C
Cao H, Rui Z Y, Yang F Q. Mechanical properties of Cu nanowires: Effects of cross-sectional area and temperature[J]. Mater. Sci. Eng. AStruct. Mater. Prop. Microstruct. Process., 2020,791139644. doi: 10.1016/j.msea.2020.139644
Alian A R, Ju Y, Meguid S A. Comprehensive atomistic modeling of copper nanowires-based surface connectors[J]. Mater. Des., 2019,175107812. doi: 10.1016/j.matdes.2019.107812
ZHAO J W, LI R, CHENG N, HOU J. The influence of the initial structure in the silver nanowire on the deformation mechanism and the distribution of the breaking positions[J]. Scientia Sinica Technologica, 2018,48(2):143-153.
Sung P H, Wu C D, Fang T H. Effects of temperature, loading rate and nanowire length on torsional deformation and mechanical properties of aluminium nanowires investigated using molecular dynamics simulation[J]. J. Phys. D-Appl. Phys., 2012,45215303. doi: 10.1088/0022-3727/45/21/215303
Liu Y H, Zhao J W, Wang F Y. Influence of length on shock-induced breaking behavior of copper nanowires[J]. Phys. Rev. B, 2009,80115417. doi: 10.1103/PhysRevB.80.115417
FENG D, SHI C X, LIU Z G. Introduction to materials science. Beijing: Chemical Industry Press, 2004.
Sun J P, Fang L, Ma A, Jiang J H, Han Y, Chen H W, Han J. The fracture behavior of twinned Cu nanowires: A molecular dynamics simulation[J]. Mater. Sci. Eng. A - Struct. Mater. Prop. Microstruct. Process., 2015,634:86-90. doi: 10.1016/j.msea.2015.03.034
Sainath G, Choudhary B K, Jayakumar T. Molecular dynamics simulation studies on the size dependent tensile deformation and fracture behaviour of body centred cubic iron nanowires[J]. Comput. Mater. Sci., 2015,104:76-83. doi: 10.1016/j.commatsci.2015.03.053
Xie Z C, Shin J, Renner J, Prakash A, Gianola D S, Bitzek E. Origins of strengthening and failure in twinned Au nanowires: Insights from in - situ experiments and atomistic simulations[J]. Acta Mater., 2020,187:166-175. doi: 10.1016/j.actamat.2020.01.038
ZHAO J W, LI R, HOU J, CHENG N. Statistical analysis of the breaking behaviors of metallic nanowires and correlation with the initial microstructure[J]. Scientia Sinica Technologica, 2018,48(7):719-728.
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Guo-Hong Gao , Run-Ze Zhao , Ya-Jun Wang , Xiao Ma , Yan Li , Jian Zhang , Ji-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
Kailong Zhang , Chao Zhang , Luanhui Wu , Qidong Yang , Jiadong Zhang , Guang Hu , Liang Song , Gaoran Li , Wenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Na Wang , Wang Luo , Huaiyi Shen , Huakai Li , Zejiang Xu , Zhiyuan Yue , Chao Shi , Hengyun Ye , Leping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696
Shiyu Hou , Maolin Sun , Liming Cao , Chaoming Liang , Jiaxin Yang , Xinggui Zhou , Jinxing Ye , Ruihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761
Neng Shi , Haonan Jia , Jixiang Zhang , Pengyu Lu , Chenglong Cai , Yixin Zhang , Liqiang Zhang , Nongyue He , Weiran Zhu , Yan Cai , Zhangqi Feng , Ting Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Minghao Hu , Tianci Xie , Yuqiang Hu , Longjie Li , Ting Wang , Tongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862