Citation: Ya-Nan JIANG, Yuan-Huan DENG, Qiong WANG, Ying-Zhi TAN, Guang-Chuan OU. Chiral recognition of mandelic acid and macrocyclic nickel(Ⅱ) complexes[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1072-1078. doi: 10.11862/CJIC.2023.073 shu

Chiral recognition of mandelic acid and macrocyclic nickel(Ⅱ) complexes

  • Corresponding author: Guang-Chuan OU, ogcouguangchuan@163.com
  • Received Date: 27 November 2022
    Revised Date: 20 March 2023

Figures(6)

  • The reactions of a racemic four-coordinated macrocyclic nickel(Ⅱ) complex[Ni(rac-L)](ClO4)2 with l- and d-mandelic acid anion in acetonitrile/water gave six-coordinated enantiomers of[Ni(RR-L) (S-Man)]ClO4 (1) and[Ni(SS-L)(R-Man)]ClO4 (2) (L=5, 5, 7, 12, 12, 14-hexamethyl-1, 4, 8, 11-tetraazacyclotetradecane, Man=mandelic acid), respectively. The reaction of[Ni(rac-L)](ClO4)2 with dl-Man- gave a conglomerate, in which the RR and SS enantiomers preferentially coordinate to l- and d-Man- respectively to give a racemic mixture of 1 and 2, and the chiral recognition occurs during the reaction, in which each crystal crystallizes into enantiopure. The reactions of[Ni(rac-L)] (ClO4)2 with dl-2-phenylpropionic acid and tropic acid anion gave complexes[Ni(rac-L)(dl-PPA)]ClO4 (3) (PPA=2-phenylpropionic acid) and[Ni(rac-L)(dl-Tro)]ClO4 (4) (Tro=tropic acid), respectively. Single-crystal X-ray diffraction analyses show that the Ni (Ⅱ) ions display an octahedral coordination geometry by coordination with four nitrogen atoms of macrocyclic ligand in a folded configuration, plus two oxygen atoms of carboxyl and hydroxyl for 1 and 2, or two oxygen atoms of carboxyl for 3 and 4 in cis-position. Complexes 1 and 2 belong to a pair of enantiomers, which are constructed via hydrogen bonding linking of[Ni(RR-L)(S-Man)]+ and[Ni(SS-L)(R-Man)]+ monomers to form 1D hydrogen bonded zigzag chain, respectively. The homochiral natures of 1 and 2 are confirmed by the results of circular dichroism (CD) spectra measurements.
  • 加载中
    1. [1]

      Diniz L F, Carvalho P S, Mussel W D, Yoshida M I, Diniz R, Fernandes C. Racemic salts and solid solutions of enantiomers of the antihypertensive drug carvedilol[J]. Cryst. Growth Des., 2019,19(8):4498-4509. doi: 10.1021/acs.cgd.9b00263

    2. [2]

      Teng Y, Gu C L, Chen Z H, Jiang H, Xiong Y, Liu D, Xiao D L. Advances and applications of chiral resolution in pharmaceutical field[J]. Chirality, 2022,34(8):1094-1119. doi: 10.1002/chir.23453

    3. [3]

      Marc L, Guillemer S, Schneider J M, Coquerel G. Continuous chiral resolution of racemic ibuprofen by diastereomeric salt formation in a couette-taylor crystallizer[J]. Chem. Eng. Res. Des., 2022,178:95-110. doi: 10.1016/j.cherd.2021.12.016

    4. [4]

      Ruiz-Mirazo K, Briones C, de la Escosura A. Prebiotic systems chemistry: New perspectives for the origins of life[J]. Chem. Rev., 2014,114:285-366. doi: 10.1021/cr2004844

    5. [5]

      Pavlov V A, Shushenachev Y V, Zlotin S G. Chiral and racemic fields concept for understanding of the homochirality origin, asymmetric catalysis, chiral superstructure formation from achiral molecules, and B-Z DNA conformational transition[J]. Symmetry, 2019,11(5)649. doi: 10.3390/sym11050649

    6. [6]

      Takahashi J, Kobayashi K. Origin of terrestrial bioorganic homochirality and symmetry breaking in the universe[J]. Symmetry, 2019,11(7)919. doi: 10.3390/sym11070919

    7. [7]

      Shemchuk O, Grepioni F, Leyssens T, Braga D. Chiral resolution via cocrystallization with inorganic salts[J]. Isr. J. Chem., 2021,61(9):563-572.  

    8. [8]

      Zhou F L, Shemchuk O, Charpentier M D, Matheys C, Collard L, ter Horst J H, Leyssens T. Simultaneous chiral resolution of two racemic compounds by preferential cocrystallization[J]. Angew. Chem. Int. Ed., 2021,60(37):20264-20268. doi: 10.1002/anie.202107804

    9. [9]

      Buhse T, Cruz J M, Noble-Teran M E, Hochberg D, Ribo J M, Crusats J, Micheau J C. Spontaneous deracemizations[J]. Chem. Rev., 2021,121(4):2147-2229. doi: 10.1021/acs.chemrev.0c00819

    10. [10]

      Kollges T, Vetter T. Design and performance assessment of continuous crystallization processes resolving racemic conglomerates[J]. Cryst. Growth Des., 2018,18(3):1686-1696. doi: 10.1021/acs.cgd.7b01618

    11. [11]

      XU Z X, LI L F, BAI X L, XU S F. Enantiomeric helical frameworks with dia net based on rigid ligands from spontaneous resolution[J]. Chinese J. Inorg. Chem., 2021,37(7):1191-1196.  

    12. [12]

      OU G C, LI Z Z, ZHANG M, YUAN X Y. Symmetry breaking: Synthesis, crystal structure of chiral acetatobis(diaminoethane)zinc(Ⅱ) perchlorate[J]. Chinese J. Inorg. Chem., 2014,30(6):1459-1463.  

    13. [13]

      Curtis N F. Transition-metal complexes with aliphatic Schiff bases. Part Ⅰ. Nickel(Ⅱ) complexes with N-isopropylidene-ethylenediamine Schiff bases[J]. J. Chem. Soc. A, 1960:4409-4412.  

    14. [14]

      Ou G C, Jiang L, Feng X L, Lu T B. Spontaneous resolution of a racemic nickel(Ⅱ) complex and helicity induction via hydrogen bonding: The effect of chiral building blocks on the helicity of 1D Chains[J]. Inorg. Chem., 2008,47(7):2710-2718. doi: 10.1021/ic7021424

    15. [15]

      Ou G C, Wang Z Z, Yang L Z, Zhao C Y, Lu T B. Chiral resolution of a racemic macrocyclic complex by recognition of one enantiomer over the other: Structures and DFT calculations[J]. Dalton Trans., 2010,39:4274-4279. doi: 10.1039/b921141a

    16. [16]

      Ou G C, Jiang L, Feng X L, Lu T B. pH values dependent helicity of 1D homochiral helical chains[J]. Cryst. Growth Des., 2011,11(3):851-856. doi: 10.1021/cg101515g

    17. [17]

      Ou G C, Li Z Z, Zhang M, Yuan X Y. Chiral resolution of l- and d-alanine and a racemic macrocyclic nickel(Ⅱ) complex: Synthesis and crystal structures[J]. Transition Met. Chem., 2014,39(2):135-140. doi: 10.1007/s11243-013-9782-9

    18. [18]

      Han L, Valle H, Bu X H. Homochiral coordination polymer with infinite double-stranded helices[J]. Inorg. Chem., 2007,46(5):1511-1513. doi: 10.1021/ic062015p

    19. [19]

      Ezuhara T, Endo K, Aoyama Y. Helical coordination polymers from achiral components in crystals. homochiral crystallization, homochiral helix winding in the solid state, and chirality control by seeding[J]. J. Am. Chem. Soc., 1999,121(14):3279-3283. doi: 10.1021/ja9819918

    20. [20]

      Tait A M, Busch D H. 5, 5, 7, 12, 12, 14-Hexamethyl-1, 4, 8, 11-tetraazacyclotetradecane (5, 5, 7, 12, 12, 14-Me6[14]ane-1, 4, 8, 11-N4) complexes[J]. Inorg. Synth., 1978,18:10-13.

    21. [21]

      Sheldrick G M. SADABS, Program for empirical absorption correction of area detector data. University of Göttingen, Germany, 1996.

    22. [22]

      Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. A, 2015,A71:3-8.  

    23. [23]

      CHEN L, DENG X, TAN Y X, ZHANG F X, KUANG D Z, JIANG W J. Synthesis, anti-tumor activity, and interaction with DNA of two substituted benzyltin complexes[J]. Chinese J. Inorg. Chem., 2022,38(6):1081-1089.  

  • 加载中
    1. [1]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    2. [2]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    3. [3]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    4. [4]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    5. [5]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    6. [6]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    7. [7]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    10. [10]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    11. [11]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    12. [12]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    13. [13]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    14. [14]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    15. [15]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    16. [16]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    17. [17]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    18. [18]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    19. [19]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    20. [20]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

Metrics
  • PDF Downloads(1)
  • Abstract views(1317)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return