Citation: Ai-Min ZHANG, Qiang LIU, Hui YIN, Jian-Guo HUANG, Zheng-Yuan AN, Li CHEN. Influence of various polymer dispersants on the performance of Pt/SAPO-11 catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1169-1178. doi: 10.11862/CJIC.2023.070 shu

Influence of various polymer dispersants on the performance of Pt/SAPO-11 catalysts

  • Corresponding author: Li CHEN, chenli@ipm.com.cn
  • Received Date: 31 October 2022
    Revised Date: 19 April 2023

Figures(6)

  • Pt/SAPO-11 catalysts were prepared by impregnation using different polymer dispersants, and their structural and acidic properties were analyzed and characterized using techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption, and NH3 temperature-programmed desorption (TPD).The results showed that the dispersants did not destroy the structure of the catalysts, but instead increased their pore volumes, pore sizes, and specific surface areas, while also changing the acid strengths and acid amounts of the zeolites. Among the dispersants used in our work, polyvinyl pyrrolidone (PVP) treatment resulted in the optimal pore volume, pore size, and acid distribution for the Pt/SAPO-11 catalyst. Evaluation of the catalytic performance of the Pt/SAPO-11 catalysts treated with different dispersants in a fixed-bed reactor showed that the PVP-treated Pt/SAPO-11 catalyst also exhibited the best catalytic performance, with a hydrogenation deoxygenation rate of Jatropha oil up to 99.45%, and bio-aviation kerosene component yield and isoparaffins (C8 -C16) selectivity reaching 44.67% and 56.37%, respectively.
  • 加载中
    1. [1]

      Hu X T, Qi P L, Fu X. Technology development background and application status on aviation biofuel[J]. Chem. Ind. Eng. Prog., 2012,31(7):1625-1630.

    2. [2]

      Lestari S, Mäki-Arvela P, Beltramini J, Lu G Q M, Dmitry Y M. Trans-forming triglycerides and fatty acids into biofuels[J]. ChemSusChem, 2009,2:1109-1119.

    3. [3]

      Fei L, Reddy H K, Hill J, Lin Q L, Yuan B, Xu Y, Dailey P, Deng S G, Luo H M. Preparation of mesoporous silica - supported palladium catalysts for biofuel upgrade[J]. Nanotechnology, 2012,2012:937-946.  

    4. [4]

      Kandaramath H T, Yaakob Z, Binitha N N. Aviation biofuel from renewable resources: Routes, opportunities and challenges[J]. Renew.Sustain. Energy Rev., 2015,42:1234-1244. doi: 10.1016/j.rser.2014.10.095

    5. [5]

      Mehla S, Krishnamurthy K R, Viswanathan B, John M, Niwate Y, Kumar K, Pai S M, Newalkar B L. n-Hexadecane hydroisomerization over Pt/ZSM-12: Role of Si/Al ratio on product distribution[J]. J. Porous Mat., 2013,20(5):1023-1029. doi: 10.1007/s10934-013-9682-6

    6. [6]

      Wang C X, Tian Z J, Wang L, Xu R S, Liu Q H, Qu W, Ma H J, Wang B C. One-step hydrotreatment of vegetable oil to produce high quality diesel-range alkanes[J]. ChemSusChem, 2012,5:1974-1983.  

    7. [7]

      Santos R C R, Valentini A, Lima C L, Filho J M, Oliveira A C. Modifi- cations of an HY zeolite for n-octane hydroconversion[J]. Appl. Catal. A- Gen., 2011,403:65-74. doi: 10.1016/j.apcata.2011.06.011

    8. [8]

      Yadav R, Sakthivel A. Silicoaluminophosphate molecular sieves as potential catalysts for hydroisomerization of alkanes and alkenes[J]. Appl. Catal. A-Gen., 2014,481:143-160. doi: 10.1016/j.apcata.2014.05.010

    9. [9]

      Herskowitz M, Landau M V, Reizner Y, Berger D. A commercially - viable, one-step process for production of green diesel from soybean oil on Pt/SAPO-11[J]. Fuel, 2013,111:157-164. doi: 10.1016/j.fuel.2013.04.044

    10. [10]

      Liang J, Wang F P. Synthesis of four monodimentional medium-pore molecular sieves and their hydroisomerization performances of ndodecane[J]. Adv. Mat. Res., 2011,236:854-857.  

    11. [11]

      Francis J, Guillon E, Bats N, Pichon C, Corma A, Simon L J. Design of improved hydrocracking catalysts by increasing the proximity between acid and metallic sites[J]. Appl. Catal. A-Gen., 2011,409:140-147.  

    12. [12]

      Tao J L, Liu L J, Zhu P H, Zhai K, Ma Q, Zhang D N, Ma J, Zhai Y P, Liu Y G, Zhang R Q. Dual - template synthesis of cage -like Ni-based catalyst for hydrotreatment of bio-oil[J]. J. Porous Mat., 2019,26(3):819-828. doi: 10.1007/s10934-018-0683-3

    13. [13]

      Hancsók J, Krár M, Magyar S. Investigation of the production of high quality biogasoil from pre-hydrogenatedvegetable oils over Pt/ SAPO-11/Al 2O3[J]. Stud. Surf. Sci. Catal., 2007,170:1605-1610.  

    14. [14]

      Rabaev M, Landau M V, Vidruk - Nehemya R, Koukouliev V, Zarchin R, Herskowitz M. Conversion of vegetable oils on Pt/Al2O3SAPO - 11 to diesel and jet fuels containing aromatics[J]. Fuel, 2015,161:287-294. doi: 10.1016/j.fuel.2015.08.063

    15. [15]

      Galadima A, Muraza O. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review[J]. J. Ind. Eng. Chem., 2015,29:12-23. doi: 10.1016/j.jiec.2015.03.030

    16. [16]

      Liu Q, Du J C, Zhang A M, Hao Y J, Zhang S P, Chen Y B, Zhao Y K. Study on the physicoche mical properties and catalytic performance of Pt/SAPO - 11 catalysts treated by acid and salt[J]. J. Fuel Chem. Technol., 2017,45:337-344.  

    17. [17]

      Chen N, Ren Y X, Qian E W. Elucidation of the active phase in PtSn/SAPO - 11 for hydrodeoxygenation of methyl palmitate[J]. J. Catal., 2016,334(3):79-88.  

    18. [18]

      Choi I H, Hwang K R, Han J S, Lee K H, Yun J S, Lee J S. The direct production of jet-fuel from non-edible oil in a single-step process[J]. Fuel, 2015,158:98-104. doi: 10.1016/j.fuel.2015.05.020

    19. [19]

      Dumitriu E, On D T, Kaliaguine S. Isoprene by prins condensation over acidic molecular sieves[J]. J. Catal., 1997,170(1):150-60. doi: 10.1006/jcat.1997.1745

    20. [20]

      Gosselink R W, Hollak S A, Chang S W, Haveren J, Jong K, Bitter J H, Daan E. Reaction pathways for the deoxygenation of vegetable oils and related model compounds[J]. ChemSusChem, 2013,6:1576-1594. doi: 10.1002/cssc.201300370

    21. [21]

      Pacheco-Sosa J G, Castillo-Escobedo A I, Chavarria-Harnandez J C, Díaz - Félix M C, Pérez - Vidal H, Ordóñez L C, García - Dávila J, Morales - Ortuño J C, Escobar B. Catalytic deoxygenation of stearic acid and waste cooking oil over Pd/SBA- 15 for obtaining hydrocar-bons with potential as renewable liquid fuels[J]. J. Porous Mat., 2019,26:1541-155. doi: 10.1007/s10934-019-00749-3

    22. [22]

      Yang Z C, Liu Y Q, Liu D D, Meng X T, Liu C G. Hydroisomeriza-tion of n - octane over bimetallic Ni - Cu/SAPO - 11 catalysts[J]. Appl. Catal. A-Gen., 2017,543:274-282. doi: 10.1016/j.apcata.2017.06.028

    23. [23]

      Yadav R, Singh A K, Sakthivel A. Synergistic catalysis over bimetal-lic alloy nanoparticles[J]. ChemCatChem, 2013,42:1160-1162.  

    24. [24]

      Verma D, Kumar R, Rana B S. Aviation fuel production from lipids by a single-step route using hierarchical mesoporous zeolites[J]. Energy Environ. Sci., 2011,4:1667-1671. doi: 10.1039/c0ee00744g

    25. [25]

      Verma D, Rana B S, Kumar R, Sibi M G, Sinha A K. Diesel and avia-tion kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11[J]. Appl. Catal. A-Gen., 2015,490:108-116. doi: 10.1016/j.apcata.2014.11.007

    26. [26]

      Ghavami R K, Rafiei Z. Performance improvements of alkaline batteries by studying the effects of different kinds of surfactant and dif-ferent derivatives of benzene on the electrochemical properties of electrolytic zinc[J]. J. Power Sources, 2006,162(2):893-899. doi: 10.1016/j.jpowsour.2005.07.010

    27. [27]

      Wang Y, Xie S, Liu J, Park J, Huang Z C, Xia Y. Shape-controlled synthesis of palladium nanocrystals: A mechanistic understanding of the evolution from octahedrons to tetrahedrons[J]. Nano Lett., 2013,13:2276-2281. doi: 10.1021/nl400893p

    28. [28]

      Zhang H, Zhang G X, Wu X W, Wen Z Y. Synthesis of Na-β-Al2O3 nanopowders by PVP sol - gel process[J]. Inorg. Chem., 2013,28:916-920.  

    29. [29]

      Zhen X L, Han J R, Kang R H. Hydrogen transfer dehalogenation of organic halides catalyzed by PVP-mont dually supported Pd-Sn catalyst in aqueous system[J]. J. Mol. Catal., 2000,14:388-391.

    30. [30]

      Wang C X, Feng F, Du J C, Zheng T, Pan Z, Zhao Y. Activation of surface lattice oxygen in ceria supported Pt/Al2O3 catalyst for low -temperature propane oxidation[J]. ChemCatChem, 2019,11(8):2054-205. doi: 10.1002/cctc.201900190

    31. [31]

      Myoung Y, Kim K L, Minkee C. Cooperative effects of secondary mesoporosity and acid site location in Pt/SAPO - 11 on n - dodecane hydroisomerization selectivity[J]. J. Catal., 2014,319:232-238. doi: 10.1016/j.jcat.2014.09.001

    32. [32]

      Liu W, Shang T, Zhou Q, Ren J, Sun Y. Physicochemical and isomer-ization property of Pt/SAPO-11 catalysts promoted by rare earths[J]. J. Rare Earths, 2009,27:937-942. doi: 10.1016/S1002-0721(08)60366-X

    33. [33]

      Calemma V, Peratello S, Perego C. Hydroisomerization and hydro-cracking of long chain nalkanes on Pt/amorphous SiO2-Al2O3 catalyst[J]. Appl. Catal. A-Gen., 2000,190:207-218. doi: 10.1016/S0926-860X(99)00292-6

    34. [34]

      Wei X, Kikhtyanin O V, Parmon V N, Wu W, Bai X F, Zhang J W, Xiao L F, Su X F, Zhang Y. Synergetic effect between the metal and acid sites of Pd/SAPO-41 bifunctional catalysts in n-hexadecane hydroisomerization[J]. J. Porous Mat., 2018,25(1):235-247. doi: 10.1007/s10934-017-0437-7

  • 加载中
    1. [1]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    2. [2]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    3. [3]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    4. [4]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    5. [5]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    6. [6]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    7. [7]

      . . University Chemistry, 2024, 39(11): 0-0.

    8. [8]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    9. [9]

      Si-Hua Liu Jun-Hao Zhou Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    14. [14]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    15. [15]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    16. [16]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    17. [17]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    18. [18]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    19. [19]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    20. [20]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

Metrics
  • PDF Downloads(1)
  • Abstract views(1031)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return