Citation: Tian-Xiang YUAN, Ren-Heng TANG, Jiang-Wen LIU, Fang-Ming XIAO, Ying WANG, Li-Ming ZENG. Electrochemical properties of Si-Fe incorporated SiOx/graphite base anode materials[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1079-1090. doi: 10.11862/CJIC.2023.068 shu

Electrochemical properties of Si-Fe incorporated SiOx/graphite base anode materials

Figures(10)

  • To solve the major defects of SiOx-based anode materials, composite materials with different Si-Fe content and SnO2 were deliberately prepared via a tandem strategy involving mechanical ball milling, spray drying, and high-temperature pyrolysis in this paper. Furthermore, the phase structures, microscopic morphologies, and electrochemical properties of as-obtained materials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), and galvanostatic charge-discharge test system. The electrochemical results show that the composite containing a mass fraction of 5% Si-Fe possesses a relatively good comprehensive electrochemical performance with a charging capacity of 443.4 mAh·g-1 and the first Coulombic efficiency of 75.2%. After 310 cycles, the charging capacity still retained 369.1 mAh·g-1, and the capacity retention rate was up to 81.0%. Meanwhile, the lithium diffusion rate is remarkably improved after Si-Fe incorporation.
  • 加载中
    1. [1]

      Zeng X L, Li J H, Singh N. Recycling of spent lithium-ion battery: A critical review[J]. Crit. Rev. Environ. Sci. Technol., 2014,44:1129-1165. doi: 10.1080/10643389.2013.763578

    2. [2]

      Xiong Y C, Liu Y, Chen L, Zhang S T, Zhu X Y, Shen T T, Ren D S, He X M, Qiu J Y, Wang L, Hu Q, Zhang H. New insight on graphite anode degradation induced by Li -plating[J]. Energy Environ. Mater., 2022,5:872-876. doi: 10.1002/eem2.12334

    3. [3]

      WEN L, LIU C M, SONG R S, LUO H Z, SHI Y, LI F, CHENG H M. Lithium storage characteristics and possible applications of graphene materials[J]. Acta Chim. Sin., 2014,72:333-344.  

    4. [4]

      LIU Q, HAO S Y, FENG D, MEI Y, ZENG T B. Research progress of anode materials for lithium-ion battery[J]. Acta Materiae Compositae Sinica, 2022,39(4):1446-1456. doi: 10.13801/j.cnki.fhclxb.20211101.002

    5. [5]

      Liang B, Liu Y P, Xu Y H. Silicon-based materials as high capacity anodes for next generation lithium ion batteries[J]. J. Power Sources, 2014,267:469-490. doi: 10.1016/j.jpowsour.2014.05.096

    6. [6]

      Casimir A, Zhang H G, Ogoke O, Amine J C, Lu J, Wu G. Silicon-based anode for lithium-ion batteries: Effectiveness of materials syn-thesis and electrode preparation[J]. Nano Energy, 2016,27:359-376. doi: 10.1016/j.nanoen.2016.07.023

    7. [7]

      Zhao H J, Deng N P, Yan J, Kang W M, Ju J G, Ruan Y L, Wang X P, Zhuang X P, Li Q X, Cheng B. A review on anode for lithium -sulfur batteries: Progress and prospects[J]. Chem. Eng. J., 2018,347:343-365. doi: 10.1016/j.cej.2018.04.112

    8. [8]

      Sarkar A, Nlebedim I C, Shrotriya P. Performance degradation due to anodic failure mechanisms in lithium-ion batteries[J]. J. Power Sources, 2021,502229145. doi: 10.1016/j.jpowsour.2020.229145

    9. [9]

      Chen Y, Qian J F, Cao Y L, Yang H X, Ai X P. Green synthesis and stable Li-storage performance of FeSi2/Si@C nanocomposite for lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2012,4:3753-3758. doi: 10.1021/am300952b

    10. [10]

      Yamada M, Ueda A, Matsumoto K, Ohzuku T. Silicon-based negative electrode for high-capacity lithium-ion batteries: "SiO-carbon" composite[J]. J. Electrochem. Soc., 2011,158:A417-A421. doi: 10.1149/1.3551539

    11. [11]

      Lee J, Moon J, Han S A, Kim J Y, Malgras V, Heo Y U, Kim H, Lee S M, Liu H K, Dou S X, Yamauchi Y, Park M S, Kim J H. Everlasting living and breathing gyroid 3D network in Si@SiOx/C nanoarchi-tecture for lithium-ion battery[J]. ACS Nano, 2019,13:9607-9619. doi: 10.1021/acsnano.9b04725

    12. [12]

      Yuan T X, Tang R H, Xiao F M, Zuo S Y, Wang Y, Liu J W. Modifying SiO as a ternary composite anode material ((SiOx/G/SnO2)@C) for lithium battery with high Li-ion diffusion and lower volume expan-sion[J]. Electrochim. Acta, 2023,439:141655-141667. doi: 10.1016/j.electacta.2022.141655

    13. [13]

      LI W C, TANG R H, XIAO F M, HUANG L, WANG Y. Preparation and properties of nano-Si doped SiOx-Si@C@carbon nanotubes composite anode materials[J]. Acta Materiae Compositae Sinica, 2020,37:1989-1996.  

    14. [14]

      Kim M K, Jang B Y, Lee J S, Kim J S, Nahm S. Microstructures and electrochemical performances of nano-sized SiOx (1.18 ≤ x ≤ 1.83) as an anode material for a lithium (Li)-ion battery[J]. J. Power Sources, 2013,244:115-121.  

    15. [15]

      Vidano R P, Fischbach D B, Willis L J, Loehr T M. Observation of Raman band shifting with excitation wavelength for carbons and graphites[J]. Solid State Commun., 1981,39:341-344. doi: 10.1016/0038-1098(81)90686-4

    16. [16]

      Lu T Z, Gong J J, Xu Z Y, Yin J Q, Shao H B, Wang J M. Scalable synthesis of porous SiFe@C compositewith excellent Lithium storage[J]. Chem. Eur. J., 2021,27:6963-6972. doi: 10.1002/chem.202100339

    17. [17]

      Zhou Z W, Liu Y T, Xie X M, Ye X Y. Constructing novel Si@SnO2 core-shell heterostructures by facile self-assembly of SnO2 nanowires on silicon hollow nanospheres for large, reversible Lithium storage[J]. ACS Appl. Mater. Interfaces, 2016,8:7092-7100. doi: 10.1021/acsami.6b00107

    18. [18]

      Jo C, Groombridge A S, De La Verpilliere J, Lee J T, Son Y, Liang H L, Boies A M, Volder M D. Continuous flow synthesis of carbon coated silicon/iron silicide secondary particles for Li-ion batteries[J]. ACS Nano, 2020,14:698-707. doi: 10.1021/acsnano.9b07473

    19. [19]

      Wang X, Cao X Q, Bourgeois L, Guan H, Chen S M, Zhong Y T, Tang D M, Li H Q, Zhai T Y, Li L, Bando Y, Golberg D. N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries[J]. Adv. Funct. Mater., 2012,22:2682-2690. doi: 10.1002/adfm.201103110

    20. [20]

      Zhang Z Q, Han X, Li L C, Su P F, Huang W, Wang J Y, Xu J F, Li C, Chen S Y, Yang Y. Tailoring the interfaces of silicon/carbon nanotube for high rate lithium-ion battery anodes[J]. J. Power Sources, 2020,450227593. doi: 10.1016/j.jpowsour.2019.227593

    21. [21]

      Wetjen M, Pritzl D, Jung R, Solchenbach S, Ghadimi R, Gasteiger H A. Differentiating the degradation phenomena in silicon-graphite electrodes for lithium -ion batteries[J]. J. Electrochem. Soc., 2017,164:A2840-A2852. doi: 10.1149/2.1921712jes

    22. [22]

      Han J L, Chen G R, Yan T T, Liu H J, Shi L Y, An Z X, Zhang J P, Zhang D S. Creating graphene-like carbon layers on SiO anodes via a layer-by-layer strategy for lithium-ion battery[J]. Chem. Eng. J., 2018,347:273-279. doi: 10.1016/j.cej.2018.04.100

    23. [23]

      Li Z L, Zhao H L, Lv P P, Zhang Z J, Zhang Y, Du Z H, Teng Y Q, Zhao L N, Zhu Z M. Watermelon-like structured SiOx-TiO2@C nanocomposite as a high -performance lithium-ion battery anode[J]. Adv. Funct. Mater., 2018,281605711. doi: 10.1002/adfm.201605711

    24. [24]

      Mei B A, Munteshari O, Lau J, Dunn B S, Pilon L. Physical interpretations of Nyquist plots for EDLC electrodes and devices[J]. J. Phys. Chem. C, 2017,122:194-206.  

    25. [25]

      Ciucci F. Modeling electrochemical impedance spectroscopy[J]. Curr. Opin. Electrochem., 2019,13:132-139. doi: 10.1016/j.coelec.2018.12.003

    26. [26]

      Choi W, Shin H C, Kim J M, Choi J Y, Yoon W S. Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries[J]. J. Electrochem. Sci. Technol., 2020,11:1-13. doi: 10.33961/jecst.2019.00528

    27. [27]

      Lim S Y. Amorphous-silicon nanoshell on artificial graphite composite as the anode for lithium-ion battery[J]. Solid State Sci., 2019,93:24-30. doi: 10.1016/j.solidstatesciences.2019.05.002

    28. [28]

      He W, Liang Y J, Tian H J, Zhang S L, Meng Z, Han W Q. A facile in situ synthesis of nanocrystal-FeSi-embedded Si/SiOx anode for long-cycle-life lithium ion batteries[J]. J. Energy Storage, 2017,8:119-126.  

    29. [29]

      Wang K, Tan Y, Li P T, Xue B, Sun J M. Facile synthesis of double layer constrained micron-sized porous Si/SiO2/C composites for lithium ion battery anodes[J]. ACS Appl. Mater. Interfaces, 2019,11:37732-37740. doi: 10.1021/acsami.9b12596

    30. [30]

      Pu X J, Zhao D, Fu C L, Chen Z X, Cao S N, Wang C S, Cao Y L. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves[J]. Angew. Chem. Int. Ed., 2021,60:21310-21318. doi: 10.1002/anie.202104167

    31. [31]

      Park J, Park S S, Won Y S. In situ XRD study of the structural changes of graphite anodes mixed with SiOx during lithium insertion and extraction in lithium ion batteries[J]. Electrochim. Acta, 2013,107:467-472. doi: 10.1016/j.electacta.2013.06.059

    32. [32]

      Hatchard T D, Dahn J R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon[J]. J. Electrochem. Soc., 2004,151:A838-A842. doi: 10.1149/1.1739217

    33. [33]

      Yang X Q, Masaki Y, Yoon W S, Masaki Y, Wang H Y, Fukuda K J, Tatsuo U. Structural studies of the new carbon-coated silicon anode materials using synchrotron-based in situ XRD[J]. Electrochem. Commun., 2002,4:893-897. doi: 10.1016/S1388-2481(02)00483-6

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    15. [15]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    16. [16]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    17. [17]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(4)
  • Abstract views(1154)
  • HTML views(111)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return