Citation: Tong-Ming SUN, Meng YOU, Dan-Qi WANG, Ying CUI, Hui-Hui CUI, Miao WANG, Yan-Feng TANG. Simple synthesis of hierarchical ZnO microspheres for organic dyes removal[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1131-1138. doi: 10.11862/CJIC.2023.067 shu

Simple synthesis of hierarchical ZnO microspheres for organic dyes removal

Figures(5)

  • Uniform and dispersed 3D hierarchical nanosheets-assembled ZnO microspheres were fabricated by a simple ethylene glycol (EG)-assisted solvothermal route, in which hexamethylenetetramine (HMTA) was selected as a functional agent. A series of controllable experiments proved that HMTA and the solvent play vital roles in the formation of hierarchical microspheres. The assembly of 2D nanosheets to construct the 3D hierarchical structures not only increases the specific surface area of the products but also builds more charge transport channels. The samples were evaluated as adsorbents for the removal of some organic dyes from the aqueous solution in dark. Resultantly, the hierarchical nanosheets-assembled ZnO microspheres showed excellent removal rate and selectivity for anionic dyes. Taking Congo red (CR) as a representative dye, it can be removed 95.67% after five adsorption cycles due to the synergistic effects of hierarchical structures, large surface areas, and electrostatic attraction. The kinetics studies confirmed that the adsorption of CR onto ZnO microspheres is physisorption and followed the pseudo-second-order kinetic and Langmuir isotherm models.
  • 加载中
    1. [1]

      Kausar A, Iqbal M, Javed A, Aftab K, Nazli Z H, Bhatti H N, Nouren S. Dyes adsorption using clay and modified clay: A review[J]. J. Mol. Liq., 2018,256:395-407. doi: 10.1016/j.molliq.2018.02.034

    2. [2]

      Molla A, Li Y, Mandal B, Kang S G, Hur S H, Chung J S. Selective adsorption of organic dyes on graphene oxide: Theoretical and experimental analysis[J]. Appl. Surf. Sci., 2019,464:170-177. doi: 10.1016/j.apsusc.2018.09.056

    3. [3]

      Yu F, Li Y, Han S, Ma J. Adsorptive removal of antibiotics from aqueous solution using carbon materials[J]. Chemosphere, 2016,153:365-385. doi: 10.1016/j.chemosphere.2016.03.083

    4. [4]

      Li Y H, Lai Z, Huang Z J, Wang H Y, Zhao C X, Ruan G H, Du F Y.. Fabrication of BiOBr/MoS2/graphene oxide composites for efficient adsorption and photocatalytic removal of tetracycline antibiotics.[J]. Appl. Surf. Sci., 2021,550149342. doi: 10.1016/j.apsusc.2021.149342

    5. [5]

      Du F Y, Sun L L, Tan W, Wei Z Y, Nie H G, Huang Z J, Ruan G H, Li J P. Magnetic stir cake sorptive extraction of trace tetracycline anti-biotics in food samples: preparation of metal-organic framework-embedded polyHIPE monolithic composites, validation and application[J]. Anal. Bioanal. Chem., 2019,411:2239-2248. doi: 10.1007/s00216-019-01660-1

    6. [6]

      Tian C G, Zhang Q, Wu A P, Jiang M J, Liang Z L, Jiang B J, Fu H G.. Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation[J]. Chem. Commun., 2012,48:2858-2860. doi: 10.1039/c2cc16434e

    7. [7]

      Goktas S, Goktas A. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review[J]. J. Alloy. Compd., 2021,863158734. doi: 10.1016/j.jallcom.2021.158734

    8. [8]

      Weldegebrieal G K. Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review[J]. Chem. Commun., 2020,120108140.  

    9. [9]

      Movahedi T, Norouzbeigi R. Synthesis of flower-like micro/nano ZnO superhydrophobic surfaces: Additive effect optimization via designed experiments[J]. J. Alloy. Compd., 2019,795:483-492. doi: 10.1016/j.jallcom.2019.04.343

    10. [10]

      Wang M, Guo Y Y, Zhu Z Q, Liu Q, Sun T M, Cui H H, Tang Y F. Diethanolamine-assisted and morphology controllable synthesis of ZnO with enhanced photocatalytic activities[J]. Mater. Lett., 2021,299130114. doi: 10.1016/j.matlet.2021.130114

    11. [11]

      WU S S, YI B, WANG R, LAN D H, TAN N Y.. Enhancing photocatalytic performance of flower-like BiOBr for degradation of rhodamine B by ZnO modification[J]. Chinese J. Inorg. Chem., 2022,38(2):211-219.  

    12. [12]

      YAO Y F, YUAN J Y, SHEN M, DU B, XING R. Synthesis and photocatalytic performance of ZnO micro/nano materials induced by amphiphilic calixarene.[J]. Chinese J. Inorg. Chem., 2022,38(2):261-273.  

    13. [13]

      ZHONG W, XIA Y F, ZHAI H L, GAO Y, LI S H, L C X. Preparation by co-precipitation method and photocatalytic performance on the degradation of dyes of Ce3+-doped nano-ZnO[J]. Chinese J. Inorg. Chem., 2020,36(1):40-52.  

    14. [14]

      Kataria N, Garg V K. Removal of Congo red and brilliant green dyes from aqueous solution using flower shaped ZnO nanoparticles[J]. J. Environ. Chem., 2017,5:5420-5428. doi: 10.1016/j.jece.2017.10.035

    15. [15]

      Chauhan A K, Kataria N, Garg V.. Green fabrication of ZnO nanoparticles using Eucalyptus spp. leaves extract and their application in wastewater remediation[J]. Chemosphere, 2020,247125803. doi: 10.1016/j.chemosphere.2019.125803

    16. [16]

      Guo Y Y, Liu N, Sun T M, Cui H H, Wang J, Wang M, Wang M M, Tang Y F. Rational structural design of ZnOHF nanotube-assembled microsphere adsorbents for high efficient Pb2+ removal[J]. CrystEngComm, 2020,22:7543-7548. doi: 10.1039/D0CE01279C

    17. [17]

      Guo Y Y, Mo Y X, Cui H H, Wang M, Tang Y F, Sun T M. Green and facile synthesis of hierarchical ZnOHF microspheres for rapid and selective adsorption of cationic dyes[J]. J. Mol. Liq., 2021,329115529. doi: 10.1016/j.molliq.2021.115529

    18. [18]

      Yu X Y, Luo T, Jia Y, Xu R X, Gao C, Zhang Y X, Liu J H, Huang X J. Three-dimensional hierarchical flower-like Mg-Al-layered double hydroxides: highly efficient adsorbents for As and Cr removal[J]. Nanoscale, 2012,4:3466-3474. doi: 10.1039/c2nr30457k

    19. [19]

      Zhang G L, Cao D J, Wang X S, Guo S Y, Yang Z Z, Cui P, Wang Q, Dou Y, Cheng S, Shen H. α-Calcium sulfate hemihydrate with a 3D hierarchical straw-sheaf morphology for use as a remove Pb2+ adsorbent[J]. Chemosphere, 2022,287132025. doi: 10.1016/j.chemosphere.2021.132025

    20. [20]

      Gao M, Wang W M, Cao M B, Yang H B, Li Y S. Constructing hydrangea-like hierarchical zinc-zirconium oxide microspheres for accelerating fluoride elimination[J]. J. Mol. Liq., 2020,317111133.  

    21. [21]

      El -Nahas S, Abd El-sadek M S, Salman H M, Elkady M M.. Controlled morphological and physical properties of ZnO nanostructures synthesized by domestic microwave route[J]. Mater. Chem. Phys., 2021,258123885. doi: 10.1016/j.matchemphys.2020.123885

    22. [22]

      Cho S H, Jung S H, Lee K H. Morphology-controlled growth of ZnO nanostructures using microwave irradiation: From basic to complex structures[J]. J. Phys. Chem. C, 2008,112:12769-12776.  

    23. [23]

      Bao Y, Wang C, Ma J Z. Morphology control of ZnO microstructures by varying hexamethylenetetramine and trisodium citrate concentration and their photocatalytic activity[J]. Mater. Des., 2016,101:7-15. doi: 10.1016/j.matdes.2016.03.158

    24. [24]

      Lv S, Wang C G, Xing S X. Hexamethylenetetramine-induced synthesis of hierarchical NiO nanostructures on nickel foam and their electrochemical properties[J]. J. Alloy. Compd., 2014,603:90-196.  

    25. [25]

      Gao X D, Li X M, Yu W D. Synthesis and characterization of flower-like ZnO nanostructures via an ethylenediamine-meditated solution route[J]. J. Solid State Chem., 2005,178:1139-1144. doi: 10.1016/j.jssc.2004.10.020

    26. [26]

      Li C, Lin Y, Li F, Zhu L H, Sun D M, Shen L, Chen Y, Ruan S P. Hexagonal ZnO nanorings: Synthesis, formation mechanism and trimethylamine sensing properties[J]. RSC Adv., 2015,5:80561-80567. doi: 10.1039/C5RA14793J

    27. [27]

      Huang Z B, Zhang Y Q, Tang F Q. Solution-phase synthesis of single-crystalline magnetic nanowires with high aspect ratio and uniformity[J]. Chem. Commun., 2005,3:342-344.  

    28. [28]

      Zhang X, Ai Z H, Jia F L, Zhang L Z. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres[J]. J. Phys. Chem. C, 2008,112:747-753.  

    29. [29]

      Zhong L S, Hu J S, Liang H P, Cao A M, Song W G, Wan L G. Self-assembled 3D flowerlike iron oxide nanostructures and their applica-tion in water treatment[J]. Adv. Mater., 2006,18:2426-2431.  

    30. [30]

      Wang M, Yang X, Tian S Q, Guo Y Y, Sun T M, Wang M M, Tang Y F. Constructing novel hierarchical porous hydrangea-like ZnWO4 microspheres with enhanced photocatalytic performance[J]. Mater. Lett., 2020,264127417.  

  • 加载中
    1. [1]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

    6. [6]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    7. [7]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    8. [8]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    9. [9]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    10. [10]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    11. [11]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    12. [12]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    13. [13]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    14. [14]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    15. [15]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    16. [16]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    17. [17]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    18. [18]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    19. [19]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    20. [20]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

Metrics
  • PDF Downloads(3)
  • Abstract views(1308)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return