Citation: Tong-Ming SUN, Meng YOU, Dan-Qi WANG, Ying CUI, Hui-Hui CUI, Miao WANG, Yan-Feng TANG. Simple synthesis of hierarchical ZnO microspheres for organic dyes removal[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1131-1138. doi: 10.11862/CJIC.2023.067 shu

Simple synthesis of hierarchical ZnO microspheres for organic dyes removal

Figures(5)

  • Uniform and dispersed 3D hierarchical nanosheets-assembled ZnO microspheres were fabricated by a simple ethylene glycol (EG)-assisted solvothermal route, in which hexamethylenetetramine (HMTA) was selected as a functional agent. A series of controllable experiments proved that HMTA and the solvent play vital roles in the formation of hierarchical microspheres. The assembly of 2D nanosheets to construct the 3D hierarchical structures not only increases the specific surface area of the products but also builds more charge transport channels. The samples were evaluated as adsorbents for the removal of some organic dyes from the aqueous solution in dark. Resultantly, the hierarchical nanosheets-assembled ZnO microspheres showed excellent removal rate and selectivity for anionic dyes. Taking Congo red (CR) as a representative dye, it can be removed 95.67% after five adsorption cycles due to the synergistic effects of hierarchical structures, large surface areas, and electrostatic attraction. The kinetics studies confirmed that the adsorption of CR onto ZnO microspheres is physisorption and followed the pseudo-second-order kinetic and Langmuir isotherm models.
  • 加载中
    1. [1]

      Kausar A, Iqbal M, Javed A, Aftab K, Nazli Z H, Bhatti H N, Nouren S. Dyes adsorption using clay and modified clay: A review[J]. J. Mol. Liq., 2018,256:395-407. doi: 10.1016/j.molliq.2018.02.034

    2. [2]

      Molla A, Li Y, Mandal B, Kang S G, Hur S H, Chung J S. Selective adsorption of organic dyes on graphene oxide: Theoretical and experimental analysis[J]. Appl. Surf. Sci., 2019,464:170-177. doi: 10.1016/j.apsusc.2018.09.056

    3. [3]

      Yu F, Li Y, Han S, Ma J. Adsorptive removal of antibiotics from aqueous solution using carbon materials[J]. Chemosphere, 2016,153:365-385. doi: 10.1016/j.chemosphere.2016.03.083

    4. [4]

      Li Y H, Lai Z, Huang Z J, Wang H Y, Zhao C X, Ruan G H, Du F Y.. Fabrication of BiOBr/MoS2/graphene oxide composites for efficient adsorption and photocatalytic removal of tetracycline antibiotics.[J]. Appl. Surf. Sci., 2021,550149342. doi: 10.1016/j.apsusc.2021.149342

    5. [5]

      Du F Y, Sun L L, Tan W, Wei Z Y, Nie H G, Huang Z J, Ruan G H, Li J P. Magnetic stir cake sorptive extraction of trace tetracycline anti-biotics in food samples: preparation of metal-organic framework-embedded polyHIPE monolithic composites, validation and application[J]. Anal. Bioanal. Chem., 2019,411:2239-2248. doi: 10.1007/s00216-019-01660-1

    6. [6]

      Tian C G, Zhang Q, Wu A P, Jiang M J, Liang Z L, Jiang B J, Fu H G.. Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation[J]. Chem. Commun., 2012,48:2858-2860. doi: 10.1039/c2cc16434e

    7. [7]

      Goktas S, Goktas A. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review[J]. J. Alloy. Compd., 2021,863158734. doi: 10.1016/j.jallcom.2021.158734

    8. [8]

      Weldegebrieal G K. Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review[J]. Chem. Commun., 2020,120108140.  

    9. [9]

      Movahedi T, Norouzbeigi R. Synthesis of flower-like micro/nano ZnO superhydrophobic surfaces: Additive effect optimization via designed experiments[J]. J. Alloy. Compd., 2019,795:483-492. doi: 10.1016/j.jallcom.2019.04.343

    10. [10]

      Wang M, Guo Y Y, Zhu Z Q, Liu Q, Sun T M, Cui H H, Tang Y F. Diethanolamine-assisted and morphology controllable synthesis of ZnO with enhanced photocatalytic activities[J]. Mater. Lett., 2021,299130114. doi: 10.1016/j.matlet.2021.130114

    11. [11]

      WU S S, YI B, WANG R, LAN D H, TAN N Y.. Enhancing photocatalytic performance of flower-like BiOBr for degradation of rhodamine B by ZnO modification[J]. Chinese J. Inorg. Chem., 2022,38(2):211-219.  

    12. [12]

      YAO Y F, YUAN J Y, SHEN M, DU B, XING R. Synthesis and photocatalytic performance of ZnO micro/nano materials induced by amphiphilic calixarene.[J]. Chinese J. Inorg. Chem., 2022,38(2):261-273.  

    13. [13]

      ZHONG W, XIA Y F, ZHAI H L, GAO Y, LI S H, L C X. Preparation by co-precipitation method and photocatalytic performance on the degradation of dyes of Ce3+-doped nano-ZnO[J]. Chinese J. Inorg. Chem., 2020,36(1):40-52.  

    14. [14]

      Kataria N, Garg V K. Removal of Congo red and brilliant green dyes from aqueous solution using flower shaped ZnO nanoparticles[J]. J. Environ. Chem., 2017,5:5420-5428. doi: 10.1016/j.jece.2017.10.035

    15. [15]

      Chauhan A K, Kataria N, Garg V.. Green fabrication of ZnO nanoparticles using Eucalyptus spp. leaves extract and their application in wastewater remediation[J]. Chemosphere, 2020,247125803. doi: 10.1016/j.chemosphere.2019.125803

    16. [16]

      Guo Y Y, Liu N, Sun T M, Cui H H, Wang J, Wang M, Wang M M, Tang Y F. Rational structural design of ZnOHF nanotube-assembled microsphere adsorbents for high efficient Pb2+ removal[J]. CrystEngComm, 2020,22:7543-7548. doi: 10.1039/D0CE01279C

    17. [17]

      Guo Y Y, Mo Y X, Cui H H, Wang M, Tang Y F, Sun T M. Green and facile synthesis of hierarchical ZnOHF microspheres for rapid and selective adsorption of cationic dyes[J]. J. Mol. Liq., 2021,329115529. doi: 10.1016/j.molliq.2021.115529

    18. [18]

      Yu X Y, Luo T, Jia Y, Xu R X, Gao C, Zhang Y X, Liu J H, Huang X J. Three-dimensional hierarchical flower-like Mg-Al-layered double hydroxides: highly efficient adsorbents for As and Cr removal[J]. Nanoscale, 2012,4:3466-3474. doi: 10.1039/c2nr30457k

    19. [19]

      Zhang G L, Cao D J, Wang X S, Guo S Y, Yang Z Z, Cui P, Wang Q, Dou Y, Cheng S, Shen H. α-Calcium sulfate hemihydrate with a 3D hierarchical straw-sheaf morphology for use as a remove Pb2+ adsorbent[J]. Chemosphere, 2022,287132025. doi: 10.1016/j.chemosphere.2021.132025

    20. [20]

      Gao M, Wang W M, Cao M B, Yang H B, Li Y S. Constructing hydrangea-like hierarchical zinc-zirconium oxide microspheres for accelerating fluoride elimination[J]. J. Mol. Liq., 2020,317111133.  

    21. [21]

      El -Nahas S, Abd El-sadek M S, Salman H M, Elkady M M.. Controlled morphological and physical properties of ZnO nanostructures synthesized by domestic microwave route[J]. Mater. Chem. Phys., 2021,258123885. doi: 10.1016/j.matchemphys.2020.123885

    22. [22]

      Cho S H, Jung S H, Lee K H. Morphology-controlled growth of ZnO nanostructures using microwave irradiation: From basic to complex structures[J]. J. Phys. Chem. C, 2008,112:12769-12776.  

    23. [23]

      Bao Y, Wang C, Ma J Z. Morphology control of ZnO microstructures by varying hexamethylenetetramine and trisodium citrate concentration and their photocatalytic activity[J]. Mater. Des., 2016,101:7-15. doi: 10.1016/j.matdes.2016.03.158

    24. [24]

      Lv S, Wang C G, Xing S X. Hexamethylenetetramine-induced synthesis of hierarchical NiO nanostructures on nickel foam and their electrochemical properties[J]. J. Alloy. Compd., 2014,603:90-196.  

    25. [25]

      Gao X D, Li X M, Yu W D. Synthesis and characterization of flower-like ZnO nanostructures via an ethylenediamine-meditated solution route[J]. J. Solid State Chem., 2005,178:1139-1144. doi: 10.1016/j.jssc.2004.10.020

    26. [26]

      Li C, Lin Y, Li F, Zhu L H, Sun D M, Shen L, Chen Y, Ruan S P. Hexagonal ZnO nanorings: Synthesis, formation mechanism and trimethylamine sensing properties[J]. RSC Adv., 2015,5:80561-80567. doi: 10.1039/C5RA14793J

    27. [27]

      Huang Z B, Zhang Y Q, Tang F Q. Solution-phase synthesis of single-crystalline magnetic nanowires with high aspect ratio and uniformity[J]. Chem. Commun., 2005,3:342-344.  

    28. [28]

      Zhang X, Ai Z H, Jia F L, Zhang L Z. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres[J]. J. Phys. Chem. C, 2008,112:747-753.  

    29. [29]

      Zhong L S, Hu J S, Liang H P, Cao A M, Song W G, Wan L G. Self-assembled 3D flowerlike iron oxide nanostructures and their applica-tion in water treatment[J]. Adv. Mater., 2006,18:2426-2431.  

    30. [30]

      Wang M, Yang X, Tian S Q, Guo Y Y, Sun T M, Wang M M, Tang Y F. Constructing novel hierarchical porous hydrangea-like ZnWO4 microspheres with enhanced photocatalytic performance[J]. Mater. Lett., 2020,264127417.  

  • 加载中
    1. [1]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    2. [2]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    3. [3]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    4. [4]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    8. [8]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    9. [9]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    10. [10]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

    11. [11]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    12. [12]

      Di AnMingdong SheZiyang ZhangTing ZhangMiaomiao XuJinjun ShaoQian ShenXuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841

    13. [13]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    14. [14]

      Xinyu TianJiaxiang GuoZeyi LiShihou ShengTianyu ZhangXianfei LiChuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174

    15. [15]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    16. [16]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    17. [17]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    18. [18]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    19. [19]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

    20. [20]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

Metrics
  • PDF Downloads(3)
  • Abstract views(1960)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return