Citation: Jian-Gong HUANG, Fu-Shun WAN, Cheng-Hui YE, Wen-Wen CHEN, Xin-Tong Lü, Deng-Ke CAO. Two anthracene-based Au(Ⅰ) complexes [Au(anbdtim)2]PF6 and [Au(anbdtim)2][Au(CN)2]: Structural modulation and luminescence switching[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 959-966. doi: 10.11862/CJIC.2023.064 shu

Two anthracene-based Au(Ⅰ) complexes [Au(anbdtim)2]PF6 and [Au(anbdtim)2][Au(CN)2]: Structural modulation and luminescence switching

  • Corresponding author: Deng-Ke CAO, dkcao@nju.edu.cn
  • Received Date: 30 November 2022
    Revised Date: 17 March 2023

Figures(7)

  • Two anthracene-based complexes [Au(anbdtim)2]PF6 (1) and [Au(anbdtim)2][Au(CN)2] (2) have been synthesized, where anbdtim=2-(anthracenyl)-4, 5-bis(2, 5-dimethyl(3-thienyl))-1-methyl-imidazole. The different counter anions, PF6- in 1 and [Au(CN)2]- in 2, led to significantly different fluorescence between 1 and 2 both in solution and in the solid state. Complexes 1 and 2 in CH2Cl2 revealed an emission at 465 and 445 nm, respectively, and their solidstate luminescence exhibited an emission at 450 nm for 1 and 478 nm for 2. Interestingly, the luminescence of 2 was sensitive to benzene molecules, with an emission at 475 nm (quantum yield Φ=66.5%) in benzene while 448 nm (Φ=22.9%) in CH2Cl2. Moreover, the blue-green-emitting solid 2-benzene was prepared by the evaporation of a benzene solution of complex 2. This solid exhibited reversible luminescence switching between blue-green emission at 491 nm and steel-blue emission at 460 nm upon alternately removing and incorporating benzene molecules. On the basis of these experimental results, we discussed the influence of counter anions and benzene molecules on the luminescence behaviours of 1 and 2.
  • 加载中
    1. [1]

      Babu S S, Praveen V K, Ajayaghosh A. Functional π-gelators and their applications[J]. Chem. Rev., 2014,114:1973-2129. doi: 10.1021/cr400195e

    2. [2]

      Pacheco-Linan P J, Martin C, Alonso-Moreno C, Juan A, Hermida-Merino D, Garzon-Ruiz A, Albaladejo J, Auweraer M V, Cohen B, Bravo I. The role of water and influence of hydrogen bonding on the self-assembly aggregation induced emission of an anthracene-guanidine-derivative[J]. Chem. Commun., 2020,56:4102-4105. doi: 10.1039/D0CC00990C

    3. [3]

      Liu H C, Gu Y R, Dai Y X, Wang K, Zhang S T, Chen G, Zou B, Yang B. Pressure-induced blue-shifted and enhanced emission: A cooperative effect between aggregation-induced emission and energy-transfer suppression[J]. J. Am. Chem. Soc., 2020,142:1153-1158. doi: 10.1021/jacs.9b11080

    4. [4]

      Chen J F, Gong D P, Wen J, Ma H, Cao D K. 2-(Anthracenyl)-4, 5-bis(2, 5-dimethyl(3-thienyl))-1H-imidazole: Regulatable stacking structures, reversible grinding- and heating-induced emission switching, and solid-state photodimerization behavior[J]. Chem. Sci., 2016,7:451-456. doi: 10.1039/C5SC03201F

    5. [5]

      Fudickar W, Linker T. Release of singlet oxygen from aromatic endoperoxides by chemical triggers[J]. Angew. Chem. Int. Ed., 2018,57:12971-12975. doi: 10.1002/anie.201806881

    6. [6]

      Wang M, Liu Z P, Zhou X H, Xiao H P, You Y J, Huang W. Anthracene-based lanthanide coordination polymer: Structure, luminescence, and detections of UO22+, PO43-, and 2-thiazolidinethione-4-carboxylic acid in water[J]. Inorg. Chem., 2020,59:18027-18034. doi: 10.1021/acs.inorgchem.0c02446

    7. [7]

      Zhou W L, Chen Y, Yu Q L, Li P Y, Chen X M, Liu Y. Photo-responsive cyclodextrin/anthracene/Eu3+ supramolecular assembly for a tunable photochromic multicolor cell label and fluorescent ink[J]. Chem. Sci., 2019,10:3346-3352. doi: 10.1039/C9SC00026G

    8. [8]

      (a) Yuan Q Z, Fan Q, Lv H, Chen W W, Yang X X, Cao D K, Wen J. Two anthracene-based Ir(Ⅲ) complexes[Ir(pbt)2(aip)]Cl and[Ir(pbt)2(aipm)]Cl: Relationship between substituent group and photo-oxidation activity as well as photo-oxidation-induced luminescence. Inorg. Chem., 2020, 59: 17071-17076
      (b)Gao T B, Qu Z Z, Tang Z, Cao D K. Cyclometalated Ir(Ⅲ) complexes incorporating a photoactive anthracene-based ligand: Syntheses, crystal structures and luminescence switching by light irradiation. Dalton Trans., 2017, 46: 15443-15450

    9. [9]

      Li Q S, Wan C Q, Zou R Y, Xu F B, Song H B, Wan X J, Zhang Z Z. Gold(Ⅰ) η2-arene complexes[J]. Inorg. Chem., 2006,45:1888-1890. doi: 10.1021/ic051869r

    10. [10]

      Zhuo H, Chi X, Jiang M T, Xu H B, Zeng M H. Luminescence switching of organogold(Ⅰ) complexes between aggregation-induced phosphorescence enhancement and aggregation-caused quenching by balancing auxiliary ligands around the Au(Ⅰ) center[J]. Chem. Asian J., 2021,16:1165-1170. doi: 10.1002/asia.202100186

    11. [11]

      Ang P L, Nguyen V H, Yip J H K. A dynamic tetranuclear gold(Ⅰ)-cyclophane-gold(Ⅰ)-centred chirality and fluxionality arising from an intramolecular shift of Au-S bonds[J]. Dalton Trans., 2021,50:11422-11428. doi: 10.1039/D1DT01984H

    12. [12]

      Zhang D, Suzuki S, Naota T. Rapid luminescent enhancement triggered by one-shot needlestick-stimulus using a liquescent gold(Ⅰ) salt[J]. Angew. Chem. Int. Ed., 2021,60:19701-19704. doi: 10.1002/anie.202107097

    13. [13]

      Luong L M C, Lowe C D, Adams A V, Moshayedi V, Olmstead M M, Balch A L. Seeing luminescence appear as crystals crumble. Isolation and subsequent self-association of individual[(C6H11NC)2Au]+ ions in crystals[J]. Chem. Sci., 2020,11:11705-11713. doi: 10.1039/D0SC03299A

    14. [14]

      Yang J G, Li K, Wang J, Sun S S, Chi W J, Wang C, Chang X Y, Zou C, To W P, Li M D, Liu X G, Lu W, Zhang H X, Che C M, Chen Y. Controlling metallophilic interactions in chiral Au(Ⅰ) double salts towards excitation wavelength-tunable circularly polarized luminescence[J]. Angew. Chem. Int. Ed., 2020,59:6915-6922. doi: 10.1002/anie.202000792

    15. [15]

      Wu N M W, Ng M, Yam V W W. Photocontrolled multiple-state photochromic benzo[b]phosphole thieno[3, 2-b]phosphole-containing alkynyl gold(Ⅰ) complex via selective light irradiation[J]. Nat. Commun., 2022,13:33-42. doi: 10.1038/s41467-021-27711-9

    16. [16]

      Tian Z Z, Yang X L, Liu B A, Zhong D K, Zhou G J, Wang W Y. New heterobimetallic Au(Ⅰ)—Pt(Ⅱ) polyynes achieving a good trade-off between transparency and optical power limiting performance[J]. J. Mater. Chem. C, 2018,6:6023-6032. doi: 10.1039/C8TC01539B

    17. [17]

      Gong D P, Gao T B, Cao D K, Ward M D. Cyclometalated Ir(Ⅲ) complexes containing quinoline-benzimidazole-based N^N ancillary ligands: Structural and luminescence modulation by varying the substituent groups or the protonation/deprotonation state of imidazole units[J]. Dalton Trans., 2017,46:275-286. doi: 10.1039/C6DT04091H

    18. [18]

      Hattori Y, Kitajima R, Matsuoka R, Kusamoto T, Nishihara H, Uchida K. Amplification of luminescence of stable radicals by coordination to NHC-gold(Ⅰ) complex[J]. Chem. Commun., 2022,58:2560-2563. doi: 10.1039/D1CC06555F

    19. [19]

      Sathyanarayana A, Siddhant K, Yamane M, Hisano K, Prabusankar G, Tsutsumi O. Tuning the Au—Au interactions by varying the degree of polymerisation in linear polymeric Au(Ⅰ) N-heterocyclic carbene complexes[J]. J. Mater. Chem. C, 2022,10:6050-6060. doi: 10.1039/D2TC00534D

    20. [20]

      (a) Xing G H, Du T C, Liu S J, Ma Y, Zhao Q. Controlling the photophysical properties of ionic transition-metal complexes through various counterions. Chem. Commun., 2022, 58: 12286-12296
      (b)Cao D K, Wei R H, Li X X, Chen J F, Ward M D. Heteroleptic Ir(Ⅲ) complexes based on 2-(2, 4-difluorophenyl)-pyridine and bisthienylethene: Structures, luminescence and photochromic properties. Dalton Trans., 2015, 44: 4289-4296
      (c)Sykes D, Parker S C, Sazanovich I V, Stephenson A, Weinstein J A, Ward M D. df energy transfer in Ir(Ⅲ)/Eu(Ⅲ) dyads: Use of a naphthyl spacer as a spatial and energetic "stepping stone". Inorg. Chem., 2013, 52: 10500-10511

  • 加载中
    1. [1]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    2. [2]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    3. [3]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    4. [4]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    5. [5]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    6. [6]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    7. [7]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    8. [8]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    9. [9]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    10. [10]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    11. [11]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    12. [12]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    13. [13]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    14. [14]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    15. [15]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    18. [18]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    19. [19]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    20. [20]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

Metrics
  • PDF Downloads(4)
  • Abstract views(539)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return