Citation: Xiao HAN, Lin-Yu WANG, Fu-Jiang GENG, Gai-Qing XI. Adsorption of rhodamine B by benzimidazole-based metal-organic framework/graphene oxide composites[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1159-1168. doi: 10.11862/CJIC.2023.061 shu

Adsorption of rhodamine B by benzimidazole-based metal-organic framework/graphene oxide composites

Figures(8)

  • In this work, two different morphologies of composites with Cd (Ⅱ) benzimidazole-derived metal-organic framework (MOF) and graphene oxide (GO) were successfully synthesized by adjusting the alkali environments in the one-pot solvothermal process. The structures and properties of these composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-visible absorption spectra (UV-Vis), and FT-IR. The adsorption performance of these composites for rhodamine B (RhB) in water was studied. The results showed that GO and Cd-MOF were successfully combined, and the addition of GO enhanced the stability of Cd-MOF in water and improved its adsorption capacity. When the pH value of the solution was 3.5 and the adsorption time was 60 min, the adsorption rate could reach ca. 95%.
  • 加载中
    1. [1]

      Liu X T, Chen S S, Li S M, Nie H X, Fen Y Q, Fan Y N, Yu M H, Chang Z, Bu X H. Structural tuning of Zn(Ⅱ)-MOFs based on pyrazole functionalized carboxylic acid ligands for organic dye adsorption[J]. CrystEngComm, 2020,22(36):5941-5945. doi: 10.1039/D0CE00798F

    2. [2]

      Zhang H, Geng W Y, Luo Y H, Ding Z J, Wang Z X, Xie A D, Zhang D E. Reticular synthesis of two anionic Zn(Ⅱ)-MOFs for organic dye adsorption/separation and lanthanide ion sensitization[J]. CrystEngComm, 2021,23(18):3319-3325. doi: 10.1039/D1CE00112D

    3. [3]

      Qasem N A A, Mohammed R H, Lawal D U. Removal of heavy metal ions from wastewater: A comprehensive and critical review[J]. npj Clean Water, 2021,4(1)36. doi: 10.1038/s41545-021-00127-0

    4. [4]

      Zhang S, Rong F L, Guo C P, Duan F H, He L H, Wang M H, Zhang Z H, Kang M M, Du M. Metal-organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro[J]. Coord. Chem. Rev., 2021,439213948. doi: 10.1016/j.ccr.2021.213948

    5. [5]

      Kumar P, Vejerano E, Khan A, Lisak G, Ahn J H, Kim K H. Metal organic frameworks (MOFs): Current trends and challenges in control and management of air quality[J]. Korean J. Chem. Eng., 2019,36(11):1839-1853. doi: 10.1007/s11814-019-0378-8

    6. [6]

      Okoro H K, Ayika S O, Ngila J C, Tella A C. Rising profile on the use of metal-organic frameworks (MOFs) for the removal of heavy metals from the environment: An overview[J]. Appl. Water Sci., 2018,8(6)169. doi: 10.1007/s13201-018-0818-3

    7. [7]

      Jayaramulu K, Geyer F, Schneemann A, Kment Š, Otyepka M, Zboril R, Vollmer D, Fischer R A. Hydrophobic metal-organic frameworks[J]. Adv. Mater., 2019,31(32)1900820.

    8. [8]

      Zhang X D, Lv X T, Shi X Y, Yang Y Q. Enhanced hydrophobic UiO-66(University of Oslo 66) metal-organic framework with high capacity and selectivity for toluene capture from high humid air[J]. J. Colloid Interface Sci., 2019,539:152-160. doi: 10.1016/j.jcis.2018.12.056

    9. [9]

      Schoenecker P M, Carson C G, Jasuja H, Flemming C J J, Walton K S. Effect of water adsorption on retention of structure and surface area of metalorganic frameworks[J]. Ind. Eng. Chem. Res., 2012,51(18):6513-6519. doi: 10.1021/ie202325p

    10. [10]

      Li Y J, Miao J P, Sun X J, Xiao J, Li Y W, Wang H H, Xia Q B, Li Z. Mechanochemical synthesis of Cu-BTC@GO with enhanced water stability and toluene adsorption capacity[J]. Chem. Eng. J., 2016,298:191-197. doi: 10.1016/j.cej.2016.03.141

    11. [11]

      Zhou Y, Zhou L, Zhang X H, Chen Y L. Preparation of zeolitic imidazolate framework-8/graphene oxide composites with enhanced VOCs adsorption capacity[J]. Microporous Mesoporous Mat., 2016,225:488-493. doi: 10.1016/j.micromeso.2016.01.047

    12. [12]

      Ying Y P, Liu D H, Zhang W X, Ma J, Huang H L, Yang Q Y, Zhong C L. High-flux graphene oxide membranes intercalated by metalorganic framework with highly selective separation of aqueous organic solution[J]. ACS Appl. Mater. Interfaces, 2017,9(2):1710-1718. doi: 10.1021/acsami.6b14371

    13. [13]

      Zheng Y, Chu F C, Zhang B, Yan J, Chen Y L. Ultrahigh adsorption capacities of carbon tetrachloride on MIL-101 and MIL-101/graphene oxide composites[J]. Microporous Mesoporous Mat., 2018,263:71-76. doi: 10.1016/j.micromeso.2017.12.007

    14. [14]

      Dai Y X, Li M, Liu F, Xue M, Wang Y Q, Zhao C C. Graphene oxide wrapped copperbenzene-1, 3, 5-tricarbxylate metal organic framework as efficient absorbent for gaseous toluene under ambient conditions[J]. Environ. Sci. Pollut. Res., 2019,26(3):2477-2491. doi: 10.1007/s11356-018-3657-8

    15. [15]

      Zheng Y, Zheng S S, Xue H G, Pang H. Metal-organic frameworks/graphene-based materials: Preparations and applications[J]. Adv. Funct. Mater., 2018,28(47)1804950. doi: 10.1002/adfm.201804950

    16. [16]

      Muschi M, Serre C. Progress and challenges of graphene oxide/metalorganic composites[J]. Coord. Chem. Rev., 2019,387:262-272. doi: 10.1016/j.ccr.2019.02.017

    17. [17]

      Zhao Y N, Han X, Yu F H, Wei D H, Cheng Q, Meng X R, Ding J, Hou H W. Direct conversion of benzothiadiazole to benzimidazole: New benzimidazole-derived metal-organic frameworks with adjustable honeycomb-like cavities[J]. Chem. -Eur. J., 2019,25(20):5246-5250. doi: 10.1002/chem.201805697

    18. [18]

      Huang H Y, Wang Y, Zhang Y B, Niu Z Y, Li X L. Amino-functionalized graphene oxide for Cr(Ⅵ), Cu(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) removal from industrial wastewater[J]. Open Chem., 2020,18(1):97-107. doi: 10.1515/chem-2020-0009

    19. [19]

      Kim D, Kim D W, Hong W G, Coskun A. Graphene/ZIF-8 composites with tunable hierarchical porosity and electrical conductivity[J]. J. Mater. Chem. A, 2016,4:7710-7717. doi: 10.1039/C6TA01899H

    20. [20]

      Liu L, Zhang B, Zhang Y R, He Y J, Huang L H, Tan S Z, Cai X. Simultaneous removal of cationic and anionic dyes from environmental water using montmorillonite-pillared graphene oxide[J]. J. Chem. Eng. Data, 2015,60:1270-1278. doi: 10.1021/je5009312

    21. [21]

      Karimzadeh Z, Javanbakht S, Namazi H. Carboxymethylcellulose/MOF-5/graphene oxide bio-nanocomposite as antibacterial drug nanocarrier agent[J]. Bioimpacts, 2018,9:5-13. doi: 10.15171/bi.2019.02

    22. [22]

      Kumar G, Masram D T. Sustainable synthesis of MOF-5@GO nanocomposites for efficient removal of rhodamine B from Water[J]. ACS Omega, 2021,6:9587-9599. doi: 10.1021/acsomega.1c00143

    23. [23]

      He Y, Fishman Z S, Yang K R, Ortiz B, Liu C, Goldsamt J, Batista V S, Pfefferle L D. Hydrophobic CuO nanosheets functionalized with organic adsorbates[J]. J. Am. Chem. Soc., 2018,140(5):1824-1833. doi: 10.1021/jacs.7b11654

    24. [24]

      Shao H Y, Zhuang Q, Gao H D, Wang Y, Ji L, Wang X, Zhang T T, Duan L M, Bai J, Niu Z Q, Liu J H. Nitrogen and oxygen tailoring of a solid carbon active site for two-electron selectivity electrocatalysis[J]. Inorg. Chem. Front., 2021,8(1):173-181. doi: 10.1039/D0QI01089H

    25. [25]

      Liu H C, Gu Y R, Dai Y X, Wang K, Zhang S T, Chen G, Zou B, Yang B. Pressure-induced blue-shifted and enhanced emission: A cooperative effect between aggregation-induced emission and energytransfer suppression[J]. J. Am. Chem. Soc., 2020,142:1153-1158. doi: 10.1021/jacs.9b11080

    26. [26]

      Aboutalebi S H, Chidembo A T, Salari M, Konstantinov K, Wexler D, Liu H K, Dou S X. Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors[J]. Energy Environ. Sci., 2011,4:1855-1865. doi: 10.1039/c1ee01039e

    27. [27]

      Tissera N D, Wijesena R N, Perera J R, de Silva K M N, Amaratunge G A J. Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating[J]. Appl. Surf. Sci., 2015,324:455-463. doi: 10.1016/j.apsusc.2014.10.148

    28. [28]

      Yao Z Y, Yang L, Cai Y C, Yan C C, Zhang M, Cai N, Dong X D, Wang P. Rigidifying the π-linker to enhance light absorption of organic dye-sensitized solar cells and influences on charge transfer dynamics[J]. J. Phys. Chem. C, 2014,118(6):2977-2986. doi: 10.1021/jp412070p

    29. [29]

      Liu X, Xu Z, Cole J M. Molecular design of UV-vis absorption and emission properties in organic fluorophores: Toward larger bathochromic shifts, enhanced molar extinction coefficients, and greater stokes shifts[J]. J. Phys. Chem. C, 2013,117(32):16584-16595. doi: 10.1021/jp404170w

    30. [30]

      Yang C, Wu S C, Cheng J H, Chen Y C. Indium-based metalorganic framework/graphite oxide composite as an efficient adsorbent in the adsorption of rhodamine B from aqueous solution[J]. J. Alloy. Compd., 2016,687:804-812. doi: 10.1016/j.jallcom.2016.06.173

  • 加载中
    1. [1]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    2. [2]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    9. [9]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    10. [10]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    11. [11]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    12. [12]

      Wendi DouGuangying WanTiefeng LiuLin HanWu ZhangChuang SunRensheng SongJianhui ZhengYujing LiuXinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389

    13. [13]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    14. [14]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    15. [15]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    16. [16]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    17. [17]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    18. [18]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    19. [19]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    20. [20]

      Xueru ZhaoAopu WangShimin WangZhijie SongLi MaLi Shao . Adsorption and visual detection of nitro explosives by pillar[n]arenes-based host–guest interactions. Chinese Chemical Letters, 2025, 36(4): 110205-. doi: 10.1016/j.cclet.2024.110205

Metrics
  • PDF Downloads(5)
  • Abstract views(2164)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return