Citation: Yu-Yun ZHENG, Jing-Hong LIU, Jia-Yun CHEN, Jian-Ming OUYANG. Effects of supersaturation, Ca2+/C2O42- stoichiometric ratio on calcium oxalate crystallization and the regulation of degraded Poria cocos polysaccharide[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 794-804. doi: 10.11862/CJIC.2023.058 shu

Effects of supersaturation, Ca2+/C2O42- stoichiometric ratio on calcium oxalate crystallization and the regulation of degraded Poria cocos polysaccharide

  • Corresponding author: Jian-Ming OUYANG, toyjm@jnu.edu.cn
  • Received Date: 19 July 2022
    Revised Date: 15 March 2023

Figures(7)

  • To study the nucleation, growth, and aggregation of calcium oxalate (CaC2O4) crystals, and to explore the inhibitory effect of degraded Poria cocos polysaccharide (PCP), CaC2O4 crystals formed under different conditions were characterized by X-ray diffraction, FT-IR, scanning electron microscope, Raman spectroscopy, ζ potentiometer, and UV spectrophotometer. The results showed that calcium oxalate monohydrate (COM) crystals were mainly formed at low supersaturation (RS ≤ 26.6). At RS being 37.6 and 46.0, 11.6% and 38.3% calcium oxalate dihydrate (COD) crystals were formed respectively, and the aggregation degree of the crystals increased at high RS. At the same RS, the proportion of COD in the crystal increased with the increase of the Ca2+/Ox2- stoichiometric ratio (nCa2+/nCa2-, Ox2-=C2O42-). The addition of degraded PCP could increase the concentration of soluble Ca2+ ions in the system, reduce the quality of generated CaC2O4 crystals, and increase the absolute value of ζ potential on the crystal surface, all of which are beneficial to inhibit the formation of CaC2O4 stones. Thus, the risk of high Ox2- concentration on the formation of kidney stones is much greater than that of high Ca2+ concentration, suggesting that the risk of oxalic acid intake on CaC2O4 stones is much greater than that of calcium intake. PCP can simultaneously inhibit the nucleation, growth, and aggregation of CaC2O4 crystals.
  • 加载中
    1. [1]

      Šafranko S, Goman S, Goman D, Jokić S, Marion I D, Mlinarić N M, Selmani A, Medvidović-Kosanović M, Stanković A. Calcium oxalate and gallic acid: Structural characterization and process optimization toward obtaining high contents of calcium oxalate monohydrate and dihydrate[J]. Crystals, 2021,11(8)954. doi: 10.3390/cryst11080954

    2. [2]

      CHENG X Y, XU M, OUYANG J M. Synthesis, characterization, adsorption properties and toxicity to renal epithelial cells of calcium oxalate monohydrate crystals with different aspect ratios[J]. Chinese J. Inorg. Chem., 2022,38(7):1261-1271.  

    3. [3]

      Wang Z, Zhang Y, Zhang J W, Deng Q, Liang H. Recent advances on the mechanisms of kidney stone formation[J]. Int. J. Mol. Med., 2021,48(2)149. doi: 10.3892/ijmm.2021.4982

    4. [4]

      Sun X Y, Zhang H, Deng J W, Yu B X, Zhang Y H, Ouyang J M. Regulatory effects of damaged renal epithelial cells after repair by Porphyra yezoensis polysaccharides with different sulfation degree on the calcium oxalate crystal-cell interaction[J]. Int. J. Nanomed., 2021,16:8087-8102. doi: 10.2147/IJN.S320278

    5. [5]

      Wang N, Zhang D, Zhang Y T, Xu W, Wang Y S, Zhong P P, Jia T Z, Xiu Y F. Endothelium corneum gigeriae Galli extract inhibits calcium oxalate formation and exerts anti-urolithic effects[J]. J. Ethnopharmacol., 2019,231:80-89. doi: 10.1016/j.jep.2018.09.003

    6. [6]

      Singh A, Tandon S, Nandi S P, Kaur T, Tandon C. Downregulation of inflammatory mediators by ethanolic extract of Bergenia ligulata (Wall.) in oxalate injured renal epithelial cells[J]. J. Ethnopharmacology, 2021,275114104. doi: 10.1016/j.jep.2021.114104

    7. [7]

      Chen X W, Sun X Y, Tang G H, Ouyang J M. Sulfated Undaria pinnatifida polysaccharide inhibits the formation of kidney stones by inhibiting HK-2 cell damage and reducing the adhesion of nano-calcium oxalate crystals[J]. Biomaterials Advances, 2021,134112564.

    8. [8]

      Akın B, Öner M, Bayram Y, Demadis K D. Effects of carboxylate-modified, "green" inulin biopolymers on the crystal growth of calcium oxalate[J]. Cryst. Growth Des., 2008,8(6):1997-2005. doi: 10.1021/cg800092q

    9. [9]

      Zhao Y W, Guo D, Li C Y, Ouyang J M. Comparison of the adhesion of calcium oxalate monohydrate to HK-2 cells before and after repair using tea polysaccharides[J]. Int. J. Nanomed., 2019,14:4277-4292. doi: 10.2147/IJN.S198644

    10. [10]

      Sun Y. Biological activities and potential health benefits of polysaccharides from Poria cocos and their derivatives[J]. Int. J. Biol. Macromol., 2014,68:131-134. doi: 10.1016/j.ijbiomac.2014.04.010

    11. [11]

      Chen F, Huang G L. Preparation and immunological activity of polysaccharides and their derivatives[J]. Int. J. Biol. Macromol., 2018,112:211-216. doi: 10.1016/j.ijbiomac.2018.01.169

    12. [12]

      Cheung Y C, Yin J, Wu J Y. Effect of polysaccharide chain conformation on ultrasonic degradation of curdlan in alkaline solution[J]. Carbohydr. Polym., 2018,195:298-302. doi: 10.1016/j.carbpol.2018.04.118

    13. [13]

      Jin Y, Zhang L, Tao Y, Zeng C, Chen Y, Cheung P C K. Solution properties of a water-insoluble (1→3)-α-D-glucan isolated from Poria cocos mycelia[J]. Carbohydr. Polym., 2004,57(2):205-209. doi: 10.1016/j.carbpol.2004.04.013

    14. [14]

      Zhang Y Q, Tang Y M, Xu J Q, Zhang D Q, Lu G, Jing W H. Modulation of polyepoxysuccinic acid on crystallization of calcium oxalate[J]. Solid State Chem., 2015,231:7-12. doi: 10.1016/j.jssc.2015.08.001

    15. [15]

      Stanković A, Kontrec J, Džakula B N, Dzakula B N, Kovacevic D, Markovic B, Kralj D. Preparation and characterization of calcium oxalate dihydrate seeds suitable for crystal growth kinetic analyses[J]. J. Cryst. Growth, 2018,500:91-97. doi: 10.1016/j.jcrysgro.2018.08.020

    16. [16]

      Donnet M, Jongen N, Lemaitre J, Bowen P. New morphology of calcium oxalate trihydrate precipitated in a segmented flow tubular reactor[J]. Mater. Sci. Lett., 2000,19:749-750. doi: 10.1023/A:1006771428827

    17. [17]

      Chen X W, Huang W B, Sun X Y, Xiong P, Ouyang J M. Antioxidant activity of sulfated Porphyra yezoensis polysaccharides and their regulating effect on calcium oxalate crystal growth[J]. Mater. Sci. Eng. C, 2021,128112338. doi: 10.1016/j.msec.2021.112338

    18. [18]

      Zhang C Y, Wu W H, Wang J, Lan M B. Antioxidant properties of polysaccharide from the brown seaweed Sargassum graminifolium (Turn.), and its effects on calcium oxalate crystallization[J]. Mar. Drugs, 2012,10(1):119-130.

    19. [19]

      Bandarapalle K, Rajasekhar K K, Bhavitha J. Antiurolithiatic activity of Bacopa monnieri by in vitro calcium oxalate crystallization methods[J]. Basic Pharmacol. Toxicol., 2021,5(1):14-17.

    20. [20]

      Sun X Y, Zhang C Y, Bhadja P, Ouyang J M. Preparation, properties, formation mechanisms, and cytotoxicity of calcium oxalate monohydrate with various morphologies[J]. CrystEngComm, 2018,20:75-87. doi: 10.1039/C7CE01912B

    21. [21]

      Tonannavar J, Deshpande G, Yenagi J, Patil S B, Patil N, Mulimani B G. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2016,154:20-26. doi: 10.1016/j.saa.2015.10.003

    22. [22]

      Kazemi-Zanjani N, Chen H, Goldberg H A, Hunter G, Grohe B, Lagugne-Labarthet F. Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy[J]. J. Am. Chem. Soc., 2012,134(41):17076-17082. doi: 10.1021/ja3057562

    23. [23]

      Muhammed Shameem K M, Chawla A, Mallya M, Unnikrishnan B K B V K, Santhosh V B K. Laser-induced breakdown spectroscopy Raman: An effective complementary approach to analyze renal calculi[J]. J. Biophotonics, 2018,11(6)e201700271. doi: 10.1002/jbio.201700271

    24. [24]

      Kulaksızoğlu S, Sofikerim M, Çevik C. In vitro effect of lemon and orange juices on calcium oxalate crystallization[J]. Int. Urol. Nephrol., 2008,40(3):589-594. doi: 10.1007/s11255-007-9256-0

    25. [25]

      Daudon M, Letavernier E, Frochot V, Haymann J, Bazin D, Jungers P. Respective influence of calcium and oxalate urine concentration on the formation of calcium oxalate monohydrate or dihydrate crystals[J]. C. R. Chim., 2016,19(11/12):1504-1513.

    26. [26]

      Gan Q Z, Sun X Y, Bhadja P, Yao X Q, Ouyang J M. Reinjury risk of nano-calcium oxalate monohydrate and calcium oxalate dihydrate crystals on injured renal epithelial cells: Aggravation of crystal adhesion and aggregation[J]. Int. J. Nanomed., 2016,11:2839-2854.

    27. [27]

      Rodgers A. Aspects of calcium oxalate crystallization: Theory, in vitro studies, and in vivo implementation[J]. J. Am. Soc. Nephrol., 1999,10:S351-S354.

    28. [28]

      Sorensen, Kahn, Reiner, Tseng, Shikany, Wallace, Chi, Wactawski-Wende, Jackson, O'Sullivan, Sadetsky, Stoller, WHI Working Group. Impact of nutritional factors on incident kidney stone formation: A report from the WHI OS[J]. J. Urol., 2012,187(5):1645-1650. doi: 10.1016/j.juro.2011.12.077

    29. [29]

      Liu H, Sun X Y, Wang F X, Ouyang J M. Regulation on calcium oxalate crystallization and protection on HK-2 cells of tea polysaccharides with different molecular weights[J]. Oxidative Med. Cell. Longev., 20205057123.

    30. [30]

      Grohe B, Rogers K A, Goldberg H A, Hunter G K. Crystallization kinetics of calcium oxalate hydrates studied by scanning confocal interference microscopy[J]. J. Cryst. Growth, 2006,295(2):148-157. doi: 10.1016/j.jcrysgro.2006.07.029

    31. [31]

      Farmanesh S, Ramamoorthy S, Chung J, Asplin J R A, Karande P, Rimer J D. Specificity of growth inhibitors and their cooperative effects in calcium oxalate monohydrate crystallization[J]. J. Am. Chem. Soc., 2014,136(1):367-376. doi: 10.1021/ja410623q

    32. [32]

      Chung J, Taylor M G, Granja I, Asplin J R, Mpourmpakis G, Rimer J D. Factors differentiating the effectiveness of polyprotic acids as inhibitors of calcium oxalate crystallization in kidney stone disease[J]. Cryst. Growth Des., 2018,18(9):5617-5627. doi: 10.1021/acs.cgd.8b00945

    33. [33]

      Abdel-Aal E A, Yassin A M K, El-Shahat M F. Effect of crystallization parameters and presence of aqueous extract of Nigella Sativa on growth inhibition of calcium oxalate monohydrate particles[J]. Part. Sci. Technol., 2018,36(2):226-234. doi: 10.1080/02726351.2016.1241847

    34. [34]

      Polat S, Eral H B. Elucidating the role of hyaluronic acid in the structure and morphology of calcium oxalate crystals[J]. Adv. Powder Technol., 2021,32(10):3650-3659. doi: 10.1016/j.apt.2021.08.021

  • 加载中
    1. [1]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    2. [2]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    3. [3]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    4. [4]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    5. [5]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    6. [6]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    7. [7]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    8. [8]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    9. [9]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    10. [10]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    11. [11]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    12. [12]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    13. [13]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    14. [14]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    17. [17]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    18. [18]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    19. [19]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    20. [20]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

Metrics
  • PDF Downloads(7)
  • Abstract views(2060)
  • HTML views(212)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return