Citation: Yu-Yun ZHENG, Jing-Hong LIU, Jia-Yun CHEN, Jian-Ming OUYANG. Effects of supersaturation, Ca2+/C2O42- stoichiometric ratio on calcium oxalate crystallization and the regulation of degraded Poria cocos polysaccharide[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 794-804. doi: 10.11862/CJIC.2023.058 shu

Effects of supersaturation, Ca2+/C2O42- stoichiometric ratio on calcium oxalate crystallization and the regulation of degraded Poria cocos polysaccharide

  • Corresponding author: Jian-Ming OUYANG, toyjm@jnu.edu.cn
  • Received Date: 19 July 2022
    Revised Date: 15 March 2023

Figures(7)

  • To study the nucleation, growth, and aggregation of calcium oxalate (CaC2O4) crystals, and to explore the inhibitory effect of degraded Poria cocos polysaccharide (PCP), CaC2O4 crystals formed under different conditions were characterized by X-ray diffraction, FT-IR, scanning electron microscope, Raman spectroscopy, ζ potentiometer, and UV spectrophotometer. The results showed that calcium oxalate monohydrate (COM) crystals were mainly formed at low supersaturation (RS ≤ 26.6). At RS being 37.6 and 46.0, 11.6% and 38.3% calcium oxalate dihydrate (COD) crystals were formed respectively, and the aggregation degree of the crystals increased at high RS. At the same RS, the proportion of COD in the crystal increased with the increase of the Ca2+/Ox2- stoichiometric ratio (nCa2+/nCa2-, Ox2-=C2O42-). The addition of degraded PCP could increase the concentration of soluble Ca2+ ions in the system, reduce the quality of generated CaC2O4 crystals, and increase the absolute value of ζ potential on the crystal surface, all of which are beneficial to inhibit the formation of CaC2O4 stones. Thus, the risk of high Ox2- concentration on the formation of kidney stones is much greater than that of high Ca2+ concentration, suggesting that the risk of oxalic acid intake on CaC2O4 stones is much greater than that of calcium intake. PCP can simultaneously inhibit the nucleation, growth, and aggregation of CaC2O4 crystals.
  • 加载中
    1. [1]

      Šafranko S, Goman S, Goman D, Jokić S, Marion I D, Mlinarić N M, Selmani A, Medvidović-Kosanović M, Stanković A. Calcium oxalate and gallic acid: Structural characterization and process optimization toward obtaining high contents of calcium oxalate monohydrate and dihydrate[J]. Crystals, 2021,11(8)954. doi: 10.3390/cryst11080954

    2. [2]

      CHENG X Y, XU M, OUYANG J M. Synthesis, characterization, adsorption properties and toxicity to renal epithelial cells of calcium oxalate monohydrate crystals with different aspect ratios[J]. Chinese J. Inorg. Chem., 2022,38(7):1261-1271.  

    3. [3]

      Wang Z, Zhang Y, Zhang J W, Deng Q, Liang H. Recent advances on the mechanisms of kidney stone formation[J]. Int. J. Mol. Med., 2021,48(2)149. doi: 10.3892/ijmm.2021.4982

    4. [4]

      Sun X Y, Zhang H, Deng J W, Yu B X, Zhang Y H, Ouyang J M. Regulatory effects of damaged renal epithelial cells after repair by Porphyra yezoensis polysaccharides with different sulfation degree on the calcium oxalate crystal-cell interaction[J]. Int. J. Nanomed., 2021,16:8087-8102. doi: 10.2147/IJN.S320278

    5. [5]

      Wang N, Zhang D, Zhang Y T, Xu W, Wang Y S, Zhong P P, Jia T Z, Xiu Y F. Endothelium corneum gigeriae Galli extract inhibits calcium oxalate formation and exerts anti-urolithic effects[J]. J. Ethnopharmacol., 2019,231:80-89. doi: 10.1016/j.jep.2018.09.003

    6. [6]

      Singh A, Tandon S, Nandi S P, Kaur T, Tandon C. Downregulation of inflammatory mediators by ethanolic extract of Bergenia ligulata (Wall.) in oxalate injured renal epithelial cells[J]. J. Ethnopharmacology, 2021,275114104. doi: 10.1016/j.jep.2021.114104

    7. [7]

      Chen X W, Sun X Y, Tang G H, Ouyang J M. Sulfated Undaria pinnatifida polysaccharide inhibits the formation of kidney stones by inhibiting HK-2 cell damage and reducing the adhesion of nano-calcium oxalate crystals[J]. Biomaterials Advances, 2021,134112564.

    8. [8]

      Akın B, Öner M, Bayram Y, Demadis K D. Effects of carboxylate-modified, "green" inulin biopolymers on the crystal growth of calcium oxalate[J]. Cryst. Growth Des., 2008,8(6):1997-2005. doi: 10.1021/cg800092q

    9. [9]

      Zhao Y W, Guo D, Li C Y, Ouyang J M. Comparison of the adhesion of calcium oxalate monohydrate to HK-2 cells before and after repair using tea polysaccharides[J]. Int. J. Nanomed., 2019,14:4277-4292. doi: 10.2147/IJN.S198644

    10. [10]

      Sun Y. Biological activities and potential health benefits of polysaccharides from Poria cocos and their derivatives[J]. Int. J. Biol. Macromol., 2014,68:131-134. doi: 10.1016/j.ijbiomac.2014.04.010

    11. [11]

      Chen F, Huang G L. Preparation and immunological activity of polysaccharides and their derivatives[J]. Int. J. Biol. Macromol., 2018,112:211-216. doi: 10.1016/j.ijbiomac.2018.01.169

    12. [12]

      Cheung Y C, Yin J, Wu J Y. Effect of polysaccharide chain conformation on ultrasonic degradation of curdlan in alkaline solution[J]. Carbohydr. Polym., 2018,195:298-302. doi: 10.1016/j.carbpol.2018.04.118

    13. [13]

      Jin Y, Zhang L, Tao Y, Zeng C, Chen Y, Cheung P C K. Solution properties of a water-insoluble (1→3)-α-D-glucan isolated from Poria cocos mycelia[J]. Carbohydr. Polym., 2004,57(2):205-209. doi: 10.1016/j.carbpol.2004.04.013

    14. [14]

      Zhang Y Q, Tang Y M, Xu J Q, Zhang D Q, Lu G, Jing W H. Modulation of polyepoxysuccinic acid on crystallization of calcium oxalate[J]. Solid State Chem., 2015,231:7-12. doi: 10.1016/j.jssc.2015.08.001

    15. [15]

      Stanković A, Kontrec J, Džakula B N, Dzakula B N, Kovacevic D, Markovic B, Kralj D. Preparation and characterization of calcium oxalate dihydrate seeds suitable for crystal growth kinetic analyses[J]. J. Cryst. Growth, 2018,500:91-97. doi: 10.1016/j.jcrysgro.2018.08.020

    16. [16]

      Donnet M, Jongen N, Lemaitre J, Bowen P. New morphology of calcium oxalate trihydrate precipitated in a segmented flow tubular reactor[J]. Mater. Sci. Lett., 2000,19:749-750. doi: 10.1023/A:1006771428827

    17. [17]

      Chen X W, Huang W B, Sun X Y, Xiong P, Ouyang J M. Antioxidant activity of sulfated Porphyra yezoensis polysaccharides and their regulating effect on calcium oxalate crystal growth[J]. Mater. Sci. Eng. C, 2021,128112338. doi: 10.1016/j.msec.2021.112338

    18. [18]

      Zhang C Y, Wu W H, Wang J, Lan M B. Antioxidant properties of polysaccharide from the brown seaweed Sargassum graminifolium (Turn.), and its effects on calcium oxalate crystallization[J]. Mar. Drugs, 2012,10(1):119-130.

    19. [19]

      Bandarapalle K, Rajasekhar K K, Bhavitha J. Antiurolithiatic activity of Bacopa monnieri by in vitro calcium oxalate crystallization methods[J]. Basic Pharmacol. Toxicol., 2021,5(1):14-17.

    20. [20]

      Sun X Y, Zhang C Y, Bhadja P, Ouyang J M. Preparation, properties, formation mechanisms, and cytotoxicity of calcium oxalate monohydrate with various morphologies[J]. CrystEngComm, 2018,20:75-87. doi: 10.1039/C7CE01912B

    21. [21]

      Tonannavar J, Deshpande G, Yenagi J, Patil S B, Patil N, Mulimani B G. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2016,154:20-26. doi: 10.1016/j.saa.2015.10.003

    22. [22]

      Kazemi-Zanjani N, Chen H, Goldberg H A, Hunter G, Grohe B, Lagugne-Labarthet F. Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy[J]. J. Am. Chem. Soc., 2012,134(41):17076-17082. doi: 10.1021/ja3057562

    23. [23]

      Muhammed Shameem K M, Chawla A, Mallya M, Unnikrishnan B K B V K, Santhosh V B K. Laser-induced breakdown spectroscopy Raman: An effective complementary approach to analyze renal calculi[J]. J. Biophotonics, 2018,11(6)e201700271. doi: 10.1002/jbio.201700271

    24. [24]

      Kulaksızoğlu S, Sofikerim M, Çevik C. In vitro effect of lemon and orange juices on calcium oxalate crystallization[J]. Int. Urol. Nephrol., 2008,40(3):589-594. doi: 10.1007/s11255-007-9256-0

    25. [25]

      Daudon M, Letavernier E, Frochot V, Haymann J, Bazin D, Jungers P. Respective influence of calcium and oxalate urine concentration on the formation of calcium oxalate monohydrate or dihydrate crystals[J]. C. R. Chim., 2016,19(11/12):1504-1513.

    26. [26]

      Gan Q Z, Sun X Y, Bhadja P, Yao X Q, Ouyang J M. Reinjury risk of nano-calcium oxalate monohydrate and calcium oxalate dihydrate crystals on injured renal epithelial cells: Aggravation of crystal adhesion and aggregation[J]. Int. J. Nanomed., 2016,11:2839-2854.

    27. [27]

      Rodgers A. Aspects of calcium oxalate crystallization: Theory, in vitro studies, and in vivo implementation[J]. J. Am. Soc. Nephrol., 1999,10:S351-S354.

    28. [28]

      Sorensen, Kahn, Reiner, Tseng, Shikany, Wallace, Chi, Wactawski-Wende, Jackson, O'Sullivan, Sadetsky, Stoller, WHI Working Group. Impact of nutritional factors on incident kidney stone formation: A report from the WHI OS[J]. J. Urol., 2012,187(5):1645-1650. doi: 10.1016/j.juro.2011.12.077

    29. [29]

      Liu H, Sun X Y, Wang F X, Ouyang J M. Regulation on calcium oxalate crystallization and protection on HK-2 cells of tea polysaccharides with different molecular weights[J]. Oxidative Med. Cell. Longev., 20205057123.

    30. [30]

      Grohe B, Rogers K A, Goldberg H A, Hunter G K. Crystallization kinetics of calcium oxalate hydrates studied by scanning confocal interference microscopy[J]. J. Cryst. Growth, 2006,295(2):148-157. doi: 10.1016/j.jcrysgro.2006.07.029

    31. [31]

      Farmanesh S, Ramamoorthy S, Chung J, Asplin J R A, Karande P, Rimer J D. Specificity of growth inhibitors and their cooperative effects in calcium oxalate monohydrate crystallization[J]. J. Am. Chem. Soc., 2014,136(1):367-376. doi: 10.1021/ja410623q

    32. [32]

      Chung J, Taylor M G, Granja I, Asplin J R, Mpourmpakis G, Rimer J D. Factors differentiating the effectiveness of polyprotic acids as inhibitors of calcium oxalate crystallization in kidney stone disease[J]. Cryst. Growth Des., 2018,18(9):5617-5627. doi: 10.1021/acs.cgd.8b00945

    33. [33]

      Abdel-Aal E A, Yassin A M K, El-Shahat M F. Effect of crystallization parameters and presence of aqueous extract of Nigella Sativa on growth inhibition of calcium oxalate monohydrate particles[J]. Part. Sci. Technol., 2018,36(2):226-234. doi: 10.1080/02726351.2016.1241847

    34. [34]

      Polat S, Eral H B. Elucidating the role of hyaluronic acid in the structure and morphology of calcium oxalate crystals[J]. Adv. Powder Technol., 2021,32(10):3650-3659. doi: 10.1016/j.apt.2021.08.021

  • 加载中
    1. [1]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    2. [2]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    15. [15]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    16. [16]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    17. [17]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    18. [18]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    19. [19]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(6)
  • Abstract views(685)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return