Citation: Zhi-Bin WANG, Zhi-Feng QIN, Xun HAN, Peng-Cheng SUN, Yi LIU, Li-Ping CHANG, Jun REN, Cong-Ming LI. Highly active and sulfur-tolerant MoO3 modified NiO-Al2O3 catalysts for coke oven gas methanation[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 967-978. doi: 10.11862/CJIC.2023.055 shu

Highly active and sulfur-tolerant MoO3 modified NiO-Al2O3 catalysts for coke oven gas methanation

Figures(6)

  • A series of xMoO3/NiO-Al2O3 catalysts (x% represented the mass fraction of MoO3) were prepared by double hydrolytic co-precipitation method combined with impregnation method. The methanation reaction activity and sulfur resistance of catalysts were evaluated using a fixed-bed reactor, and the catalysts were characterized in detail fresh and after deactivation. The results showed that the low-temperature methanation activity of the catalyst decreased with the increase in MoO3 loading, whereas the sulfur resistance of the catalyst was significantly enhanced after MoO3 doping. The decrease in catalyst activity for low-temperature methanation was attributed to the fact that the increase in MoO3 loading reduced the active specific surface area of the catalyst, but the introduction of MoO3 also provided a competitive adsorption site for sulfide, which can delay sulfur poisoning at the active site. The xMoO3/NiO-Al2O3 catalyst with 12.5% MoO3 loading (mass fraction) maintained the highest methanation activity for 7 h in the presence of 143 mg·m-3 H2S/H2 (81.1% CO conversion, 550 ℃). The sulfur chemisorption content of 12.5MoO3/NiO-Al2O3 catalyst reaching 0.71% (mass fraction) was 1.48 times that of NiO-Al2O3 catalyst and further XPS also confirmed that the amount of MoS2 generated was the highest, which indicated that Mo preferentially adsorbs more sulfur and protects the active site. In addition, at a MoO3 loading of 12.5%, MoO3 on the surface of the catalyst reached the threshold of monolayer dispersion, which can provide more adsorption sites for sulfides when competitive adsorption occurs.
  • 加载中
    1. [1]

      Razzaq R, Zhu H W, Jiang L, Muhammad U, Li C S, Zhang S J. Catalytic methanation of CO and CO2 in coke oven gas over Ni-Co/ZrO2-CeO2[J]. Ind. Eng. Chem. Res., 2013,52:2247-2256. doi: 10.1021/ie301399z

    2. [2]

      Portha J F, Uribe-Soto W, Commenge J M, Valentin S, Falk L. Techno-economic and carbon footprint analyses of a coke oven gas reuse process for methanol production[J]. Processes, 2021,91042. doi: 10.3390/pr9061042

    3. [3]

      Hernandez A D, Kaisalo N, Simell P, Scarsella M. Effect of H2S and thiophene on the steam reforming activity of nickel and rhodium catalysts in a simulated coke oven gas stream[J]. Appl. Catal. B-Environ., 2019,258117977. doi: 10.1016/j.apcatb.2019.117977

    4. [4]

      Elbaba I F, Williams P T. Deactivation of nickel catalysts by sulfur and carbon for the pyrolysis-catalytic gasification/reforming of waste tires for hydrogen production[J]. Energy Fuels, 2014,28:2104-2113. doi: 10.1021/ef4023477

    5. [5]

      Jia X Y, Rui N, Zhang X S, Hu X, Liu C J. Ni/ZrO2 by dielectric barrier discharge plasma decomposition with improved activity and enhanced coke resistance for CO methanation[J]. Catal. Today, 2019,334:215-222. doi: 10.1016/j.cattod.2018.11.020

    6. [6]

      Hussain I, Jalil A A, Hassan N S, Hamid M Y S. Recent advances in catalytic systems for CO2 conversion to substitute natural gas (SNG): Perspective and challenges[J]. J. Energy Chem., 2021,62:377-407. doi: 10.1016/j.jechem.2021.03.040

    7. [7]

      Appari S, Janardhanan V M, Bauri R, Jayanti S, Deutschmann O. A detailed kinetic model for biogas steam reforming on Ni and catalyst deactivation due to sulfur poisoning[J]. Appl. Catal. A-Gen., 2014,471:118-125. doi: 10.1016/j.apcata.2013.12.002

    8. [8]

      Ahn J, Chung W, Chang S. Deactivation and regeneration method for Ni catalysts by H2S poisoning in CO2 methanation reaction[J]. Catalysts, 2021,111292. doi: 10.3390/catal11111292

    9. [9]

      Gao J J, Liu Q, Gu F N, Liu B, Zhong Z Y, Su F B. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Adv., 2015,5:22759-22776. doi: 10.1039/C4RA16114A

    10. [10]

      WANG Y H, BAI S Y, CUI L J, LIU J, YU J, XU G W. Catalytic activity and sulfur resistance stability of Ni-Mo-based catalysts for syngas methanation[J]. CIESC Journal, 2018,69:2063-2072.  

    11. [11]

      Liu X P, Yan J K, Mao J, He D D, Yang S, Mei Y, Luo Y M. Inhibitor, co-catalyst, or intermetallic promoter? Probing the sulfur-tolerance of MoOx surface decoraion on Ni/SiO2 during methane dry reforming[J]. Appl. Surf. Sci., 2021,548149231. doi: 10.1016/j.apsusc.2021.149231

    12. [12]

      HUO X D, WANG Z Q, ZHANG R, SONG S S, HUANG J J, FANG Y T. Preparation of β-Mo2C, Ni3Mo3N/β-Mo2C and its catalytic performance for methanation[J]. Journal of Fuel Chemistry and Technology, 2016,44:457-462.  

    13. [13]

      NIU X P, JIANG Y X. Mo-Ni/γ-formation and function of MoNi4 alloy as Al2O3 methanation catalyst[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 1999,30:709-714.  

    14. [14]

      Mendez-Mateos D, Laura B V, Requies J M, Cambra J F. A study of deactivation by H2S and regeneration of a Ni catalyst supported on Al2O3 during methanation of CO2 effect of the promoters Co, Cr, Fe, and Mo[J]. RSC Adv., 2020,10:16511-16564.

    15. [15]

      Aksoylu A E, Misirli Z, Önsan Z I. Interaction between nickel and molybdenum in Ni-Mo/Al2O3 catalysts: Ⅰ: CO2 methanation and SEM-TEM studies[J]. Appl. Catal. A-Gen., 1998,168:385-397. doi: 10.1016/S0926-860X(97)00369-4

    16. [16]

      Aksoylu A E, Önsan Z I. Interaction between nickel and molybdenum in Ni-Mo/Al2O3 catalysts: Ⅱ: CO hydrogenation[J]. Appl. Catal. A-Gen., 1998,168:399-407. doi: 10.1016/S0926-860X(97)00370-0

    17. [17]

      Aksoylu A E, İşli A I, Önsan Z I. Interaction between nickel and molybdenum in Ni-Mo/Al2O3 catalysts: Ⅲ.: effect of impregnation strategy[J]. Appl. Catal. A-Gen., 1999,183:357-364. doi: 10.1016/S0926-860X(99)00075-7

    18. [18]

      Fowler R W, Bartholomew C H. Activity, adsorption, and sulfur tolerance studies of fluidized bed methanation catalysts[J]. Ind. Eng. Chem. Res., 1979,18:339-347. doi: 10.1021/i360072a022

    19. [19]

      Zhang Y X, Wang Y D, Xu N N, Zhou X D. A theoretical studies of sulfur poisoning tolerance at the interface of Mo doped Ni/Yttria-stabilized zirconia[J]. Int. J. Hydrog. Energy, 2021,46:21075-21081. doi: 10.1016/j.ijhydene.2021.03.199

    20. [20]

      Zhi C M, Yang W. Improvement of Mo-doping on sulfur-poisoning of Ni catalyst: Activity and selectivity to CO methanation[J]. Comput. Theor. Chem., 2021,1197113140. doi: 10.1016/j.comptc.2020.113140

    21. [21]

      Lv Y H, Xin Z, Meng X, Tao M, Bian Z C, Gu J, Gao W L. Effect of La, Mg and Mo promoters on dispersion and thermostability of Ni species on KIT-6 for CO methanation[J]. Appl. Catal. A-Gen., 2017,534:125-132.

    22. [22]

      Zhang R Y, Wei A L, Zhu M, Wu X X, Wang H, Zhu X L, Ge Q F. Tuning reverse water gas shift and methanation reactions during CO2 reduction on Ni catalysts via surface modification by MoOx[J]. J. CO2 Util., 2021,52101678. doi: 10.1016/j.jcou.2021.101678

    23. [23]

      XU C, WANG X J, HU X H, CHEN X L, WANG F C. Experimental study of nickel-based catalysts for syngas methanation[J]. Journal of Fuel Chemistry and Technology, 2012,40:216-220.

    24. [24]

      Qin Z F, Ban H Y, Wang X Y, Wang Z B, Niu Y X, Yao Y, Ren J, Chang L P, Miao M Q, Xie K C, Li C M. Development of highly stable Ni-Al2O3 catalysts for CO methanation[J]. Catal. Lett., 2021,151:2647-2657. doi: 10.1007/s10562-020-03486-4

    25. [25]

      Qin Z F, Ren J, Miao M Q, Li Z, Lin J Y, Xie K C. The catalytic methanation of coke oven gas over Ni-Ce/Al2O3 catalysts prepared by microwave heating: Effect of amorphous NiO formation[J]. Appl. Catal. B-Environ., 2015,164:18-30. doi: 10.1016/j.apcatb.2014.08.047

    26. [26]

      Ashino T, Takada K, Morimoto Y, Abiko K. Determination of trace amounts of sulfur in high-purity iron by infrared absorption after combustion: Selection and pre-treatment of reaction accelerators[J]. Phys. Status Solidi A-Appl. Mat., 2002,189:123-132. doi: 10.1002/1521-396X(200201)189:1<123::AID-PSSA123>3.0.CO;2-9

    27. [27]

      Hu F F, Wang C H, Li J D, Liu H, Zhang L. Determination of elemental impurities in iron-nickel-based superalloys by glow discharge mass spectrometry[J]. Atom. Spectrosc., 2020,42:25-31.

    28. [28]

      Zhang J Y, Xin Z, Meng X, Lv Y H, Tao M. Effect of MoO3 on structures and properties of Ni-SiO2 methanation catalysts prepared by the hydrothermal synthesis method[J]. Ind. Eng. Chem. Res., 2013,52:14533-14544. doi: 10.1021/ie401708h

    29. [29]

      Chen Y Q, Tian Z W, Liu Q, Bian B. A MoOx-doped Ni/3D-SBA-15 catalyst for CO methanation: The effect of a solvent and a MoOx promoter on the catalytic properties[J]. Sustain. Energ. Fuels, 2020,4:3042-3050. doi: 10.1039/D0SE00269K

    30. [30]

      Zhang Y, Yang H Y, Liu Q, Bian B. MoOx-doped ordered mesoporous Ni/Al2O3 catalyst for CO methanation[J]. Energy Technol., 2020,82000165. doi: 10.1002/ente.202000165

    31. [31]

      Tao M, Zhou C L, Shi Y Q, Meng X, Gu J, Gao W L, Xin Z. Enhanced sintering resistance of bimetal/SBA-15 catalysts with promising activity under a low temperature for CO methanation[J]. RSC Adv., 2020,10:20852-20861. doi: 10.1039/D0RA02168G

    32. [32]

      WANG W H, LI Z H, WANG B W, XU Y, MA X B. Research progress of sulfur-resistant methanation reaction[J]. CIESC Journal, 2015,66:3357-3366.  

    33. [33]

      Bian Z C, Meng X, Tao M, Lv Y H, Xin Z. Effect of MoO3 on catalytic performance and stability of the SBA-16 supported Ni-catalyst for CO methanation[J]. Fuel, 2016,179:193-201. doi: 10.1016/j.fuel.2016.03.091

    34. [34]

      Fan X Q, Liu D D, Zhao Z, Li J M, Liu J. Influence of Ni/Mo ratio on the structure-performance of ordered mesoporous Ni-Mo-O catalysts for oxidative dehydrogenation of propane[J]. Catal. Today, 2020,339:67-78. doi: 10.1016/j.cattod.2019.02.036

    35. [35]

      ZHOU T N, YIN H L, HAN S N, CAI Y M, LIU Y Q, LIU C G. Influences of different phosphorus contents on NiMoP/Al2O3 hydrotreating catalysts[J]. Journal of Fuel Chemistry and Technology, 2009,37:330-334.

    36. [36]

      Domínguez-Crespo M A, Díaz-García L, Arce-Estrada E M, Torres-Huerta A M, Cortéz-De la Paz M T. Study to improve the quality of a Mexican straight run gasoil over NiMo/γ-Al2O3 catalysts[J]. Appl. Surf. Sci., 2006,253:1205-1214. doi: 10.1016/j.apsusc.2006.01.061

    37. [37]

      Alihosseinzadeh A, Nematollahi B, Rezaei M, Lay E N. CO methanation over Ni catalysts supported on high surface area mesoporous nanocrystalline γ-Al2O3 for CO removal in H2-rich stream[J]. Int. J. Hydrog. Energy, 2015,40:1809-1819. doi: 10.1016/j.ijhydene.2014.11.138

    38. [38]

      Zhang K, Zhang H T, Ma H F, Ying W Y, Fang D Y. The effect of preparation method on the performance of Pt Sn/Al2O3 catalysts for acetic acid hydrogenation[J]. Pol. J. Chem. Technol., 2015,17:11-17.

    39. [39]

      Fang L, Shu Y Y, Wang A Q, Zhang T. Green synthesis and characterization of anisotropic uniform single-crystal α-MoO3 nanostructures[J]. J. Phys. Chem. C, 2007,111:2401-2408. doi: 10.1021/jp065791r

    40. [40]

      Weber T, Muijsers J C, Van Wolput J H M C, Verhagen C P J, Niemantsverdriet J W. Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2, as studied by X-ray photoelectron and infrared emission spectroscopy[J]. J. Phys. Chem., 1996,100:14144-14150. doi: 10.1021/jp961204y

    41. [41]

      Ninh T K T, Massin L, Laurenti D, Vrinat M. A new approach in the evaluation of the support effect for NiMo hydrodesulfurization catalysts[J]. Appl. Catal. A-Gen., 2011,407:29-39. doi: 10.1016/j.apcata.2011.08.019

    42. [42]

      Hernández-Huesca R, Mérida-Robles J, Maireles-Torres P, Rodríguez-Castellón E, Jiménez-López A. Hydrogenation and ring-opening of tetralin on Ni and NiMo supported on alumina-pillared α-zirconium phosphate catalysts. A thiotolerance study[J]. J. Catal., 2001,203:122-132. doi: 10.1006/jcat.2001.3321

    43. [43]

      Galtayries A, Wisniewski S, Grimblot J. Formation of thin oxide and sulphide films on polycrystalline molybdenum foils: Characterization by XPS and surface potential variations[J]. J. Electron. Spectrosc., 1997,87:31-44. doi: 10.1016/S0368-2048(97)00071-6

  • 加载中
    1. [1]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    2. [2]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    3. [3]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    4. [4]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    5. [5]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    6. [6]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    7. [7]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    10. [10]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    11. [11]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    12. [12]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    13. [13]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    14. [14]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    15. [15]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    16. [16]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    18. [18]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(2)
  • Abstract views(569)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return