Highly active and sulfur-tolerant MoO3 modified NiO-Al2O3 catalysts for coke oven gas methanation
- Corresponding author: Zhi-Feng QIN, qinzhifeng2022@163.com Cong-Ming LI, licongming0523@163.com
Citation:
Zhi-Bin WANG, Zhi-Feng QIN, Xun HAN, Peng-Cheng SUN, Yi LIU, Li-Ping CHANG, Jun REN, Cong-Ming LI. Highly active and sulfur-tolerant MoO3 modified NiO-Al2O3 catalysts for coke oven gas methanation[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(5): 967-978.
doi:
10.11862/CJIC.2023.055
Razzaq R, Zhu H W, Jiang L, Muhammad U, Li C S, Zhang S J. Catalytic methanation of CO and CO2 in coke oven gas over Ni-Co/ZrO2-CeO2[J]. Ind. Eng. Chem. Res., 2013,52:2247-2256. doi: 10.1021/ie301399z
Portha J F, Uribe-Soto W, Commenge J M, Valentin S, Falk L. Techno-economic and carbon footprint analyses of a coke oven gas reuse process for methanol production[J]. Processes, 2021,91042. doi: 10.3390/pr9061042
Hernandez A D, Kaisalo N, Simell P, Scarsella M. Effect of H2S and thiophene on the steam reforming activity of nickel and rhodium catalysts in a simulated coke oven gas stream[J]. Appl. Catal. B-Environ., 2019,258117977. doi: 10.1016/j.apcatb.2019.117977
Elbaba I F, Williams P T. Deactivation of nickel catalysts by sulfur and carbon for the pyrolysis-catalytic gasification/reforming of waste tires for hydrogen production[J]. Energy Fuels, 2014,28:2104-2113. doi: 10.1021/ef4023477
Jia X Y, Rui N, Zhang X S, Hu X, Liu C J. Ni/ZrO2 by dielectric barrier discharge plasma decomposition with improved activity and enhanced coke resistance for CO methanation[J]. Catal. Today, 2019,334:215-222. doi: 10.1016/j.cattod.2018.11.020
Hussain I, Jalil A A, Hassan N S, Hamid M Y S. Recent advances in catalytic systems for CO2 conversion to substitute natural gas (SNG): Perspective and challenges[J]. J. Energy Chem., 2021,62:377-407. doi: 10.1016/j.jechem.2021.03.040
Appari S, Janardhanan V M, Bauri R, Jayanti S, Deutschmann O. A detailed kinetic model for biogas steam reforming on Ni and catalyst deactivation due to sulfur poisoning[J]. Appl. Catal. A-Gen., 2014,471:118-125. doi: 10.1016/j.apcata.2013.12.002
Ahn J, Chung W, Chang S. Deactivation and regeneration method for Ni catalysts by H2S poisoning in CO2 methanation reaction[J]. Catalysts, 2021,111292. doi: 10.3390/catal11111292
Gao J J, Liu Q, Gu F N, Liu B, Zhong Z Y, Su F B. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Adv., 2015,5:22759-22776. doi: 10.1039/C4RA16114A
WANG Y H, BAI S Y, CUI L J, LIU J, YU J, XU G W. Catalytic activity and sulfur resistance stability of Ni-Mo-based catalysts for syngas methanation[J]. CIESC Journal, 2018,69:2063-2072.
Liu X P, Yan J K, Mao J, He D D, Yang S, Mei Y, Luo Y M. Inhibitor, co-catalyst, or intermetallic promoter? Probing the sulfur-tolerance of MoOx surface decoraion on Ni/SiO2 during methane dry reforming[J]. Appl. Surf. Sci., 2021,548149231. doi: 10.1016/j.apsusc.2021.149231
HUO X D, WANG Z Q, ZHANG R, SONG S S, HUANG J J, FANG Y T. Preparation of β-Mo2C, Ni3Mo3N/β-Mo2C and its catalytic performance for methanation[J]. Journal of Fuel Chemistry and Technology, 2016,44:457-462.
NIU X P, JIANG Y X. Mo-Ni/γ-formation and function of MoNi4 alloy as Al2O3 methanation catalyst[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 1999,30:709-714.
Mendez-Mateos D, Laura B V, Requies J M, Cambra J F. A study of deactivation by H2S and regeneration of a Ni catalyst supported on Al2O3 during methanation of CO2 effect of the promoters Co, Cr, Fe, and Mo[J]. RSC Adv., 2020,10:16511-16564.
Aksoylu A E, Misirli Z, Önsan Z I. Interaction between nickel and molybdenum in Ni-Mo/Al2O3 catalysts: Ⅰ: CO2 methanation and SEM-TEM studies[J]. Appl. Catal. A-Gen., 1998,168:385-397. doi: 10.1016/S0926-860X(97)00369-4
Aksoylu A E, Önsan Z I. Interaction between nickel and molybdenum in Ni-Mo/Al2O3 catalysts: Ⅱ: CO hydrogenation[J]. Appl. Catal. A-Gen., 1998,168:399-407. doi: 10.1016/S0926-860X(97)00370-0
Aksoylu A E, İşli A I, Önsan Z I. Interaction between nickel and molybdenum in Ni-Mo/Al2O3 catalysts: Ⅲ.: effect of impregnation strategy[J]. Appl. Catal. A-Gen., 1999,183:357-364. doi: 10.1016/S0926-860X(99)00075-7
Fowler R W, Bartholomew C H. Activity, adsorption, and sulfur tolerance studies of fluidized bed methanation catalysts[J]. Ind. Eng. Chem. Res., 1979,18:339-347. doi: 10.1021/i360072a022
Zhang Y X, Wang Y D, Xu N N, Zhou X D. A theoretical studies of sulfur poisoning tolerance at the interface of Mo doped Ni/Yttria-stabilized zirconia[J]. Int. J. Hydrog. Energy, 2021,46:21075-21081. doi: 10.1016/j.ijhydene.2021.03.199
Zhi C M, Yang W. Improvement of Mo-doping on sulfur-poisoning of Ni catalyst: Activity and selectivity to CO methanation[J]. Comput. Theor. Chem., 2021,1197113140. doi: 10.1016/j.comptc.2020.113140
Lv Y H, Xin Z, Meng X, Tao M, Bian Z C, Gu J, Gao W L. Effect of La, Mg and Mo promoters on dispersion and thermostability of Ni species on KIT-6 for CO methanation[J]. Appl. Catal. A-Gen., 2017,534:125-132.
Zhang R Y, Wei A L, Zhu M, Wu X X, Wang H, Zhu X L, Ge Q F. Tuning reverse water gas shift and methanation reactions during CO2 reduction on Ni catalysts via surface modification by MoOx[J]. J. CO2 Util., 2021,52101678. doi: 10.1016/j.jcou.2021.101678
XU C, WANG X J, HU X H, CHEN X L, WANG F C. Experimental study of nickel-based catalysts for syngas methanation[J]. Journal of Fuel Chemistry and Technology, 2012,40:216-220.
Qin Z F, Ban H Y, Wang X Y, Wang Z B, Niu Y X, Yao Y, Ren J, Chang L P, Miao M Q, Xie K C, Li C M. Development of highly stable Ni-Al2O3 catalysts for CO methanation[J]. Catal. Lett., 2021,151:2647-2657. doi: 10.1007/s10562-020-03486-4
Qin Z F, Ren J, Miao M Q, Li Z, Lin J Y, Xie K C. The catalytic methanation of coke oven gas over Ni-Ce/Al2O3 catalysts prepared by microwave heating: Effect of amorphous NiO formation[J]. Appl. Catal. B-Environ., 2015,164:18-30. doi: 10.1016/j.apcatb.2014.08.047
Ashino T, Takada K, Morimoto Y, Abiko K. Determination of trace amounts of sulfur in high-purity iron by infrared absorption after combustion: Selection and pre-treatment of reaction accelerators[J]. Phys. Status Solidi A-Appl. Mat., 2002,189:123-132. doi: 10.1002/1521-396X(200201)189:1<123::AID-PSSA123>3.0.CO;2-9
Hu F F, Wang C H, Li J D, Liu H, Zhang L. Determination of elemental impurities in iron-nickel-based superalloys by glow discharge mass spectrometry[J]. Atom. Spectrosc., 2020,42:25-31.
Zhang J Y, Xin Z, Meng X, Lv Y H, Tao M. Effect of MoO3 on structures and properties of Ni-SiO2 methanation catalysts prepared by the hydrothermal synthesis method[J]. Ind. Eng. Chem. Res., 2013,52:14533-14544. doi: 10.1021/ie401708h
Chen Y Q, Tian Z W, Liu Q, Bian B. A MoOx-doped Ni/3D-SBA-15 catalyst for CO methanation: The effect of a solvent and a MoOx promoter on the catalytic properties[J]. Sustain. Energ. Fuels, 2020,4:3042-3050. doi: 10.1039/D0SE00269K
Zhang Y, Yang H Y, Liu Q, Bian B. MoOx-doped ordered mesoporous Ni/Al2O3 catalyst for CO methanation[J]. Energy Technol., 2020,82000165. doi: 10.1002/ente.202000165
Tao M, Zhou C L, Shi Y Q, Meng X, Gu J, Gao W L, Xin Z. Enhanced sintering resistance of bimetal/SBA-15 catalysts with promising activity under a low temperature for CO methanation[J]. RSC Adv., 2020,10:20852-20861. doi: 10.1039/D0RA02168G
WANG W H, LI Z H, WANG B W, XU Y, MA X B. Research progress of sulfur-resistant methanation reaction[J]. CIESC Journal, 2015,66:3357-3366.
Bian Z C, Meng X, Tao M, Lv Y H, Xin Z. Effect of MoO3 on catalytic performance and stability of the SBA-16 supported Ni-catalyst for CO methanation[J]. Fuel, 2016,179:193-201. doi: 10.1016/j.fuel.2016.03.091
Fan X Q, Liu D D, Zhao Z, Li J M, Liu J. Influence of Ni/Mo ratio on the structure-performance of ordered mesoporous Ni-Mo-O catalysts for oxidative dehydrogenation of propane[J]. Catal. Today, 2020,339:67-78. doi: 10.1016/j.cattod.2019.02.036
ZHOU T N, YIN H L, HAN S N, CAI Y M, LIU Y Q, LIU C G. Influences of different phosphorus contents on NiMoP/Al2O3 hydrotreating catalysts[J]. Journal of Fuel Chemistry and Technology, 2009,37:330-334.
Domínguez-Crespo M A, Díaz-García L, Arce-Estrada E M, Torres-Huerta A M, Cortéz-De la Paz M T. Study to improve the quality of a Mexican straight run gasoil over NiMo/γ-Al2O3 catalysts[J]. Appl. Surf. Sci., 2006,253:1205-1214. doi: 10.1016/j.apsusc.2006.01.061
Alihosseinzadeh A, Nematollahi B, Rezaei M, Lay E N. CO methanation over Ni catalysts supported on high surface area mesoporous nanocrystalline γ-Al2O3 for CO removal in H2-rich stream[J]. Int. J. Hydrog. Energy, 2015,40:1809-1819. doi: 10.1016/j.ijhydene.2014.11.138
Zhang K, Zhang H T, Ma H F, Ying W Y, Fang D Y. The effect of preparation method on the performance of Pt Sn/Al2O3 catalysts for acetic acid hydrogenation[J]. Pol. J. Chem. Technol., 2015,17:11-17.
Fang L, Shu Y Y, Wang A Q, Zhang T. Green synthesis and characterization of anisotropic uniform single-crystal α-MoO3 nanostructures[J]. J. Phys. Chem. C, 2007,111:2401-2408. doi: 10.1021/jp065791r
Weber T, Muijsers J C, Van Wolput J H M C, Verhagen C P J, Niemantsverdriet J W. Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2, as studied by X-ray photoelectron and infrared emission spectroscopy[J]. J. Phys. Chem., 1996,100:14144-14150. doi: 10.1021/jp961204y
Ninh T K T, Massin L, Laurenti D, Vrinat M. A new approach in the evaluation of the support effect for NiMo hydrodesulfurization catalysts[J]. Appl. Catal. A-Gen., 2011,407:29-39. doi: 10.1016/j.apcata.2011.08.019
Hernández-Huesca R, Mérida-Robles J, Maireles-Torres P, Rodríguez-Castellón E, Jiménez-López A. Hydrogenation and ring-opening of tetralin on Ni and NiMo supported on alumina-pillared α-zirconium phosphate catalysts. A thiotolerance study[J]. J. Catal., 2001,203:122-132. doi: 10.1006/jcat.2001.3321
Galtayries A, Wisniewski S, Grimblot J. Formation of thin oxide and sulphide films on polycrystalline molybdenum foils: Characterization by XPS and surface potential variations[J]. J. Electron. Spectrosc., 1997,87:31-44. doi: 10.1016/S0368-2048(97)00071-6
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Liyong DU , Yi LIU , Guoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
Yu Deng , Yan Liu , Yonghui Deng , Jinsheng Cheng , Yidong Zou , Wei Luo . In situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Fengyu Zhang , Yali Liang , Zhangran Ye , Lei Deng , Yunna Guo , Ping Qiu , Peng Jia , Qiaobao Zhang , Liqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Yan ZHAO , Jiaxu WANG , Zhonghu LI , Changli LIU , Xingsheng ZHAO , Hengwei ZHOU , Xiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Reaction conditions: VH2/VCO=3∶1, T=200-360 ℃, p=0.1 MPa, WHSV=20 000 mL·g-1·h-1
Reaction condition: VH2/VCO=3∶1, T=550 ℃, p=0.1 MPa, WHSV=20 000 mL·g-1·h-1
(a) NiO-Al2O3, (b) 5MoO3/NiO-Al2O3, (c) 7.5MoO3/NiO-Al2O3, (d) 10MoO3/NiO-Al2O3, (e) 12.5MoO3/NiO-Al2O3, (f) 15MoO3/NiO-Al2O3, (g) 20MoO3/NiO-Al2O3
(a) NiO-Al2O3, (b) 5MoO3/NiO-Al2O3, (c) 7.5MoO3/NiO-Al2O3, (d) 10MoO3/NiO-Al2O3, (e) 12.5MoO3/NiO-Al2O3, (f) 15MoO3/NiO-Al2O3, and (g) 20MoO3/NiO-Al2O3