Citation: Hao-Ying ZHAI, Zi-Li ZOU, Ming-Yu LI, Li-Yuan ZHANG, Wen-Jun ZHOU. Synthesis of boron and phosphorus co-doped Fe-Co bimetallic materials for electrocatalytic oxygen evolution[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 627-636. doi: 10.11862/CJIC.2023.044 shu

Synthesis of boron and phosphorus co-doped Fe-Co bimetallic materials for electrocatalytic oxygen evolution

  • Corresponding author: Wen-Jun ZHOU, zhwj84@126.com
  • Received Date: 17 August 2022
    Revised Date: 16 March 2023

Figures(5)

  • Boron and phosphorus co-doped Fe-Co (Fe-Co-B-P) materials were successfully synthesized by one-step hydrothermal method.The morphology, structure, and composition of the synthesized materials were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS), and Fourier transform infrared spectroscopy (FT-IR).The electrochemical oxygen evolution reaction (OER) properties of the materials were studied by linear sweep voltammetry (LSV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) techniques.The results showed that the loose rough surface of as-synthesized Fe-Co-B-P had many voids among particles, which can expose abundant active sites and improve the OER electrocatalytic activity.The overpotential of Fe-Co-B-P was 278 and 309 mV under the current density of 10 and 100 mA·cm-2, respectively.And the Fe-Co-B-P electrocatalyst possessed favorable reaction kinetics with a low Tafel slope of 24 mV·dec-1 and facilitated charge transfer, indicating that Fe-Co-B-P had better OER electrocatalytic performance.Moreover, the potential was basically maintained at 1.55 V (vs RHE) after 10 h chronopotentiometric test, suggesting that the catalyst had good electrochemical stability.This is due to the synergistic effect between Fe-Co bimetal and B-P-nonmetal to promote electron transfer.
  • 加载中
    1. [1]

      Zhai H Y, Gao T T, Qi T, Zhang Y J, Zeng G F, Xiao D. Iron-cobalt phosphomolybdate with high electrocatalytic activity for oxygen evolution reaction[J]. Chem.-Asian J., 2017,12:2694-2702. doi: 10.1002/asia.201700905

    2. [2]

      Wu J, Zhao T, Zhang R, Xu R K, Gao J K, Yao J M. Supramolecular nanofiber templated metal-embedded nitrogen-doped carbon nanotubes for efficient electrocatalysis of oxygen evolution reaction[J]. Z. Anorg. Allg. Chem., 2018,644:1660-1666. doi: 10.1002/zaac.201800373

    3. [3]

      Sun K L, Wang K H, Yu T P, Liu X, Wang G X, Jiang L H, Bu Y Y, Xie G W. High-performance Fe-Co-P alloy catalysts by electroless deposition for overall water splitting[J]. Int. J. Hydrog. Energy, 2019,44:1328-1335. doi: 10.1016/j.ijhydene.2018.11.182

    4. [4]

      Li J W, Xu W M, Luo J X, Zhou D, Zhang D W, Wei L C, Xu P M, Yuan D S. Synthesis of 3D hexagram-like cobalt-manganese sulfides nanosheets grown on nickel foam: A bifunctional electrocatalyst for overall water splitting[J]. Nano-Micro Lett., 2018,10:1-10. doi: 10.1007/s40820-017-0154-4

    5. [5]

      Lan Q Y, Lin Y P, Li Y M, Liu D. MOF-derived, CeOx-modified CoP/carbon composites for oxygen evolution and hydrogen evolution reactions[J]. J. Mater. Sci., 2018,53:12123-12131. doi: 10.1007/s10853-018-2519-6

    6. [6]

      Wu Y Y, Xie Z J, Li Y, Lv Z, Xu L L, Wei B. In-situ self-reconstruction of Ni-Fe-Al hybrid phosphides nanosheet arrays enables efficient oxygen evolution in alkaline[J]. Int. J. Hydrog. Energy, 2021,46:25070-25080. doi: 10.1016/j.ijhydene.2021.05.060

    7. [7]

      Alhakemy A Z, Elseman A M, Fayed M G, Nassr A B A A, Kashyout A E H, Wen Z H. Hybrid electrocatalyst of CoFe2O4 decorating carbon spheres for alkaline oxygen evolution reaction[J]. Ceram. Int., 2022,48:5442-5449. doi: 10.1016/j.ceramint.2021.11.088

    8. [8]

      Hu Q Z, Liu Y, Ma L T, Zhang X M, Huang H T. PPy enhanced Fe, W co-doped Co3O4 free-standing electrode for highly-efficient oxygen evolution reaction[J]. J. Appl. Electrochem., 2018,48:1189-1195. doi: 10.1007/s10800-018-1211-5

    9. [9]

      Zheng X B, Cui P X, Qian Y M, Zhao G Q, Zheng X S, Xu X, Cheng Z X, Liu Y Y, Dou S Y, Sun W P. Multifunctional active-center-transferable platinum/lithium cobalt oxide heterostructured electrocatalysts towards superior water splitting[J]. Angew. Chem. Int. Ed., 2020,59:14533-14540. doi: 10.1002/anie.202005241

    10. [10]

      Ni Y R, He B W, Luo S Y, Wu X Y, Feng X Z, Luo Y, Lin J, Sun J L, Fan K, Ji Y F, Zhang G K, Chen H. Microporous core-shell Co11(HPO3)8(OH)6/Co11(PO3)8O6 nanowires for highly efficient electrocatalytic oxygen evolution reaction[J]. Appl. Catal. B-Environ., 2019,25:118091-118116.

    11. [11]

      Wang K H, Sun K L, Yu T P, Liu X, Wang G X, Jiang L H, Xie G W. Facile synthesis of nanoporous Ni-Fe-P bifunctional catalysts with high performance for overall water splitting[J]. J. Mater. Chem. A, 2019,7:2518-2523. doi: 10.1039/C8TA10856K

    12. [12]

      Jebaslinhepzybai B T, Partheeban T, Gavali D S, Thapa R, Sasidharan M. One-pot solvothermal synthesis of Co2P nanoparticles: An efficient HER and OER electrocatalysts[J]. Int. J. Hydrog. Energy, 2021,46:21924-21938. doi: 10.1016/j.ijhydene.2021.04.022

    13. [13]

      Ma X Z, Zhao K X, Sun Y, Wang Y, Yan F, Zhang X T, Chen Y J. Direct observation of chemical origins in crystalline (NixCo1-x)2B oxygen evolution electrocatalysts[J]. Catal. Sci. Technol., 2020,10:2165-2172. doi: 10.1039/D0CY00099J

    14. [14]

      Chen H Y, Chen J X, Ning P, Chen X, Liang J H, Yao X, Chen D, Qin L S, Huang Y X, Wen Z H. 2D heterostructure of amorphous CoFeB coating black phosphorus nanosheets with optimal oxygen intermediate absorption for improved electrocatalytic water oxidation[J]. ACS Nano, 2021,15:12418-12428. doi: 10.1021/acsnano.1c04715

    15. [15]

      Xu J L, Yang Y X, Zhou W Y, Ma X J, Xu J Y, Cao Y L, Chai H. Anchoring CoFe2O4 nanospheres on two-dimensional microporous carbon from walnut shell as efficient multifunctional electrocatalyst[J]. J. Solid State Chem., 2021,299122106. doi: 10.1016/j.jssc.2021.122106

    16. [16]

      Feng L X, Li A R, Li Y X, Liu J, Wang L D Y, Huang L Y, Wang Y, Ge X B. A highly active CoFe layered double hydroxide for water splitting[J]. ChemPlusChem, 2017,82:483-488. doi: 10.1002/cplu.201700005

    17. [17]

      Xie J Y, Liu Z Z, Li J, Feng L, Yang M, Ma Y, Liu D P, Wang L, Chai Y M, Dong B. Fe-doped CoP core-shell structure with open cages as efficient electrocatalyst for oxygen evolution[J]. J. Energy Chem., 2020,48:328-333. doi: 10.1016/j.jechem.2020.02.031

    18. [18]

      Zhang H B, Zhou W, Dong J C, Lu X F, Lou X W. Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution[J]. Energy Environ. Sci., 2019,12:3348-3355. doi: 10.1039/C9EE02787D

    19. [19]

      Dong D Q, Guo X Y, Ma C L, Gong L Y, Su L H, Xie T, Zhu Y, Wang J. Ni-Fe bimetallic core-shell structured catalysts supported on biomass longan aril derived nitrogen doped carbon for efficient oxygen reduction and evolution performance[J]. Mater. Today Commun., 2020,24101127. doi: 10.1016/j.mtcomm.2020.101127

    20. [20]

      Chen H Y, Ouyang S X, Zhao M, Li Y X, Ye J H. Synergistic activity of Co and Fe in amorphous Cox-Fe-B catalyst for efficient oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2017,9:40333-40343. doi: 10.1021/acsami.7b13939

    21. [21]

      Xuan C J, Wang J, Xia W W, Zhu J, Peng Z K, Xia K D, Xiao W P, Xin H L L, Wang D L. Heteroatom (P, B, or S) incorporated NiFe-based nanocubes as efficient electrocatalysts for the oxygen evolution reaction[J]. J. Mater. Chem. A, 2018,6:7062-7069. doi: 10.1039/C8TA00410B

    22. [22]

      Wang Z L, Liu W J, Hu Y M, Guan M L, Xu L, Li H P, Bao J, Li H M. Cr-doped CoFe layered double hydroxides: Highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea[J]. Appl. Catal. B-Environ., 2020,12118959.

    23. [23]

      Li Y J, Mao Z F, Wang Q, Li D B, Wang R, He B B, Gong Y S, Wang H W. Hollow nanosheet array of phosphorus-anion-decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting[J]. Chem. Eng. J., 2020,390124556. doi: 10.1016/j.cej.2020.124556

    24. [24]

      Wang Y Z, Yang M, Ding Y M, Li N W, Yu L. Recent advances in complex hollow electrocatalysts for water splitting[J]. Adv. Funct. Mater., 2022,322108681. doi: 10.1002/adfm.202108681

    25. [25]

      Bardestani R, Patience G S, Kaliaguine S. Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH, and DFT[J]. Can. J. Chem. Eng., 2019,97:2781-2791. doi: 10.1002/cjce.23632

    26. [26]

      Huang Q S, Li C H, Tu Y K, Jiang Y, Mei P, Yan X M. Spinel CoFe2O4/carbon nanotube composites as efficient bifunctional electrocatalysts for oxygen reduction and oxygen evolution reaction[J]. Ceram. Int., 2021,47:1602-1608. doi: 10.1016/j.ceramint.2020.08.276

    27. [27]

      Farooq U, Zhuang J G, Wang X H, Lyu S G. A recyclable polydopamine-functionalized reduced graphene oxide/Fe nanocomposite (PDA@Fe/rGO) for the enhanced degradation of 1, 1, 1-trichloroethane[J]. Chem. Eng. J., 2021,403126405. doi: 10.1016/j.cej.2020.126405

    28. [28]

      Zhai H Y, Liu F M, Huang Y L, Yang Q, Tian C C, Zhou W J. Preparation of peanut shell-like calcium carbonate from biowaste chicken eggshell and its application for aqueous victoria blue B removal[J]. Microporous Mesoporous Mat., 2022,329111549. doi: 10.1016/j.micromeso.2021.111549

    29. [29]

      Gao M, Wang W, Yang H B, Ye B C. Hydrothermal synthesis of hierarchical hollow hydroxyapatite microspheres with excellent fluoride adsorption property[J]. Microporous Mesoporous Mat., 2019,289109620. doi: 10.1016/j.micromeso.2019.109620

    30. [30]

      Cai W Z, Chen R, Yang H B, Tao H B, Wang H Y, Gao J J, Liu W, Liu S, Hung S F, Liu B. Amorphous versus crystalline in water oxidation catalysis: A case study of NiFe alloy[J]. Nano Lett., 2020,20:4278-4285. doi: 10.1021/acs.nanolett.0c00840

    31. [31]

      Zhao D P, Dai M Z, Zhao Y, Liu H Q, Liu Y, Wu X. Improving electrocatalytic activities of FeCo2O4@FeCo2S4@PPy electrodes by surface/interface regulation[J]. Nano Energy, 2020,72104715. doi: 10.1016/j.nanoen.2020.104715

    32. [32]

      Qu Y Q, Yang H B, Yang N, Fan Y Z, Zhu H Y, Zou G T. The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles[J]. Mater. Lett., 2006,60:3548-3552. doi: 10.1016/j.matlet.2006.03.055

    33. [33]

      Yu D H, He J G, Wang Z Y, Pang H L, Li L, Zheng Y S, Chen Y W, Zhang J. Mineralization of norfloxacin in a CoFe-LDH/CF cathodebased heterogeneous electro-Fenton system: Preparation parameter optimization of the cathode and conversion mechanisms of H2O2 to ·OH[J]. Chem. Eng. J., 2021,417129240. doi: 10.1016/j.cej.2021.129240

    34. [34]

      Zha Q Q, Xu W Y, Li X L, Ni Y H. Chlorine-doped α-Co(OH)2 hollow nano-dodecahedrons prepared by a ZIF-67 self-sacrificing template route and enhanced OER catalytic activity[J]. Dalton Trans., 2019,48:12127-12136. doi: 10.1039/C9DT02141H

    35. [35]

      Xu H, Zhang W Z Z, Zhang J L, Wu Z C, Sheng T, Gao F. An Fe-doped Co11(HPO3)8(OH)6 nanosheets array for high-performance water electrolysis[J]. Electrochim. Acta, 2020,334135616. doi: 10.1016/j.electacta.2020.135616

    36. [36]

      Taha T A, Azab A A, El-Khawas E H. Comprehensive study of structural, magnetic and dielectric properties of borate/Fe3O4 glass nanocomposites[J]. J. Electron. Mater., 2020,49:1161-1166. doi: 10.1007/s11664-019-07825-z

    37. [37]

      Li Y B, Zhao C. Enhancing water oxidation catalysis on a synergistic phosphorylated NiFe hydroxide by adjusting catalyst wettability[J]. ACS Catal., 2017,7:2535-2541. doi: 10.1021/acscatal.6b03497

    38. [38]

      Lv H L, Zhao H Y, Cao T C, Qian L, Wang Y B, Zhao G H. Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework[J]. J. Mol. Catal. A-Chem., 2017,400:81-89.

    39. [39]

      Bian J L, Song Z Y, Li X L, Zhang Y Z, Cheng C W. Nickel iron phosphide ultrathin nanosheets anchored on nitrogen-doped carbon nanoflake arrays as a bifunctional catalyst for efficient overall water splitting[J]. Nanoscale, 2020,12:8443-8452. doi: 10.1039/C9NR10471B

    40. [40]

      Hang L F, Zhang T, Sun Y Q, Men D D, Lyu X J, Zhang Q L, Cai W P, Li Y. Ni0.33Co0.67MoS4 nanosheets as a bifunctional electrolytic water catalyst for overall water splitting[J]. J. Mater. Chem. A, 2018,6:19555-19562. doi: 10.1039/C8TA07773H

    41. [41]

      Hu X S, Hu H P, Li C, Li T, Lou X B, Chen Q, Hu B W. Cobaltbased metal organic framework with superior lithium anodic performance[J]. J. Solid State Chem., 2016,242:71-76. doi: 10.1016/j.jssc.2016.07.021

    42. [42]

      Xie J Y, Liu Z Z, Li J, Feng L, Yang M, Ma Y, Liu D P, Wang L, Chai Y M, Dong B. Fe-doped CoP core-shell structure with open cages as efficient electrocatalyst for oxygen evolution[J]. J. Energy Chem., 2020,48:328-333. doi: 10.1016/j.jechem.2020.02.031

    43. [43]

      Suryawanshi U P, Suryawanshi M P, Ghorpade U V, Shin S W, Kim J, Kim J H. An earth-abundant, amorphous cobalt-iron-borate (Co-Fe-Bi) prepared on Ni foam as highly efficient and durable electrocatalysts for oxygen evolution[J]. Appl. Surf. Sci., 2019,495143462. doi: 10.1016/j.apsusc.2019.07.204

    44. [44]

      Shuai C, Mo Z L, Niu X H, Du Y X, Gao Q Q, Liu J J, Liu N J, Guo R B. Dual-metal CoNi nanoparticles in B-doped carbon layers as efficient and durable electrocatalyst for oxygen evolution reaction[J]. Appl. Surf. Sci., 2020,532147381. doi: 10.1016/j.apsusc.2020.147381

    45. [45]

      Yuan H F, Wang S M, Ma Z Z, Kundu M, Tang B, Li J P, Wang X G. Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride[J]. Chem. Eng. J., 2021,404126474. doi: 10.1016/j.cej.2020.126474

    46. [46]

      Xie L X, Liu Y, Zhang W, Xu S C. A dopamine/tannic-acid-based co-deposition combined with phytic acid modification to enhance the anti-fouling property of RO membrane[J]. Membranes, 2021,11:342-355. doi: 10.3390/membranes11050342

    47. [47]

      Gao T T, Wu S W, Li X Q, Lin C H, Yue Q, Tang X M, Yu S M, Xiao D. Phytic acid assisted ultra-fast in situ construction of Ni foam-supported amorphous Ni-Fe phytates to enhance catalytic performance for the oxygen evolution reaction[J]. Inorg. Chem. Front., 2022,9:3598-3608.

    48. [48]

      Wang J, Tan C F, Zhu T, Ho G W. Topotactic consolidation of monocrystalline CoZn hydroxides for advanced oxygen evolution electrodes[J]. Angew. Chem. Int. Ed., 2016,55:1-6. doi: 10.1002/anie.201510990

    49. [49]

      Hoang , V C, Gomes V G, Dinh K N. Ni- and P-doped carbon from waste biomass: A sustainable multifunctional electrode for oxygen reduction, oxygen evolution and hydrogen evolution reactions[J]. Electrochim. Acta, 2019,314:49-60. doi: 10.1016/j.electacta.2019.05.053

    50. [50]

      Zhang K, Zhang G, Qu J H, Liu H J. Disordering the atomic structure of Co(Ⅱ) oxide via B-doping: An efficient oxygen vacancy introduction approach for high oxygen evolution reaction electrocatalysts[J]. Small, 2018,141802760. doi: 10.1002/smll.201802760

    51. [51]

      Liu H B, Yang L, Qiao K W, Zheng L R, Cao X H, Cao D P. Amorphous cobalt iron borate grown on carbon paper as a precatalyst for water oxidation[J]. ChemSusChem, 2019,12:3524-3531. doi: 10.1002/cssc.201901327

    52. [52]

      Wu M J, Wei Q L, Zhang G X, Qiao J L, Wu M X, Zhang J H, Gong Q J, Sun S H. Fe/Co double hydroxide/oxide nanoparticles on N-doped CNTs as highly efficient electrocatalyst for rechargeable liquid and quasi-solid-state zinc-air catteries[J]. Adv. Energy Mater., 2018,81801836. doi: 10.1002/aenm.201801836

    53. [53]

      Yao M Q, Hu H H, Wang N, Hu W C, Komarneni S. Quaternary (Fe/Ni)(P/S) mesoporous nanorods templated on stainless steel mesh lead to stable oxygen evolution reaction for over two months[J]. J. Colloid Interf. Sci., 2018,6:11724-11733.

    54. [54]

      Huang G Q, Zhao L, Yuan S S, Li N, Jing S B. Iron doped mesoporous cobalt phosphide with optimized electronic structure for enhanced hydrogen evolution[J]. Int. J. Hydrog. Energy, 2022,47:14767-14776. doi: 10.1016/j.ijhydene.2022.02.223

    55. [55]

      Chen H X, Li Y W, Liu H J, Ji Q H, Zou L J, Gao J K. Metal-organic framework-derived sulfur and nitrogen dual-doped bimetallic carbon nanotubes as electrocatalysts for oxygen evolution reaction[J]. J. Solid State Chem., 2020,288121421. doi: 10.1016/j.jssc.2020.121421

    56. [56]

      Zhu J Q, Ren Z Y, Du S C, Xie Y, Wu J, Meng H Y, Xue Y Z, Fu H G. Co-vacancy-rich Co1-xS nanosheets anchored on rGO for high-efficiency oxygen evolution[J]. Nano Res., 2017,10:1819-1831. doi: 10.1007/s12274-017-1511-9

    57. [57]

      Gao T T, Li X Q, Chen X J, Zhou C X, Yue Q, Yuan H Y, Xiao D. Ultra-fast preparing carbon nanotube-supported trimetallic Ni, Ru, Fe heterostructures as robust bifunctional electrocatalysts for overall water splitting[J]. Chem. Eng. J., 2021,424130416. doi: 10.1016/j.cej.2021.130416

    58. [58]

      Wang Z K, Chen J Q, Bi R, Dou W, Wang K B, Mao F F, Wu H, Wang S S. Supercapacitor and oxygen evolution reaction performances based on morphology-dependent Co-MOFs[J]. J. Solid State Chem., 2020,283:121-128.

    59. [59]

      Moya A A. Identification of characteristic time constants in the initial dynamic response of electric double layer capacitors from high-frequency electrochemical impedance[J]. J. Power Sources, 2018,397:124-133. doi: 10.1016/j.jpowsour.2018.07.015

    60. [60]

      Silva V D, Simoes T A, Grilo J P F, Medeiros E S, Macedo D A. Impact of the NiO nanostructure morphology on the oxygen evolution reaction catalysis[J]. J. Mater. Sci., 2020,55:6648-6659. doi: 10.1007/s10853-020-04481-1

    61. [61]

      Lian J Q, Wu Y H, Zhang H A, Gu S Y, Zeng Z W, Ye X Y. Onestep synthesis of amorphous Ni-Fe-P alloy as bifunctional electrocatalyst for overall water splitting in alkaline medium[J]. Int. J. Hydrog. Energy, 2018,43:12929-12938. doi: 10.1016/j.ijhydene.2018.05.107

    62. [62]

      Zhang X, Zhang L, Zhu G G, Zhu Y X, Lu S Y. Mixed metal phosphide chainmail catalysts confined in N-doped porous carbon nanoboxes as highly efficient water-oxidation electrocatalysts with ultralow overpotentials and Tafel slopes[J]. ACS Appl. Mater. Interfaces, 2020,12:7153-7161. doi: 10.1021/acsami.9b19504

    63. [63]

      Sun X H, Shao Q, Pi Y C, Guo J, Huang X Q. A general approach to synthesise ultrathin NiM (M=Fe, Co, Mn) hydroxide nanosheets as high-performance low-cost electrocatalysts for overall water splitting[J]. J. Mater. Chem. A, 2017,5:7769-7775. doi: 10.1039/C7TA02091K

    64. [64]

      Chen X J, Zeng G F, Gao T T, Jin Z Y, Zhang Y J, Yuan H Y, Xiao D. In situ formation of high performance Ni-phytate on Ni-foam for efficient electrochemical water oxidation[J]. Electrochem. Commun., 2017,74:42-47. doi: 10.1016/j.elecom.2016.09.010

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    6. [6]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    11. [11]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    17. [17]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    18. [18]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    19. [19]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    20. [20]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

Metrics
  • PDF Downloads(12)
  • Abstract views(1378)
  • HTML views(355)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return