Citation: Xue-Qin GUO, Xiao-Chuan DENG, Chao-Liang ZHU, Xin FU, Rui-Rui WANG, Wan-Xia MA, Jie FAN, Fang-Tao ZUO, Bin-Ju QING. Preparation and adsorption properties for Cs+ of modified diatomite-supported copper hexacyanoferrate composite[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 815-829. doi: 10.11862/CJIC.2023.043 shu

Preparation and adsorption properties for Cs+ of modified diatomite-supported copper hexacyanoferrate composite

  • Corresponding author: Bin-Ju QING, qbj@isl.ac.cn
  • Received Date: 18 October 2022
    Revised Date: 13 March 2023

Figures(18)

  • Herein, aluminum chloride was used as the aluminum source to modify diatomite (De) by hydrothermal method. Copper hexacyanoferrate (KCuHCF) nanoparticles were loaded onto the surface of modified De by the impregnation method, and two composite adsorbents, γ-AlOOH/De-KCuHCF and γ-Al2O3/De-KCuHCF, were prepared. The prepared materials were characterized and used for Cs+ adsorption. The results showed that the prepared adsorbents had better adsorption performance for Cs+. The maximum adsorption capacity can reach 75.44 and 84.02 mg·g-1, respectively. The desorption rate of γ-Al2O3/De-KCuHCF can reach 81.88% after three consecutive desorption with 3 mol·L-1 NH4NO3 as the desorption solution and the Cs+ adsorption rate of γ-Al2O3/De-KCuHCF in simulated brines was as high as 97.55%. After five adsorption-desorption cycles the adsorption capacity remained high. The adsorption kinetic process and adsorption isotherm model of the prepared adsorbent were also analyzed. The results showed that the adsorption process was in line with the quasi-second-order kinetic model, which was controlled by the intra-particle diffusion and liquid film diffusion, and was in line with the Langmuir adsorption isotherm model.
  • 加载中
    1. [1]

      HUANG W F, LI X D. Applications and up-to-date development of extraction separation technology of Cs[J]. Rare Metals and Cemented Carbides, 2003,31(3):18-20. doi: 10.3969/j.issn.1004-0536.2003.03.006

    2. [2]

      LIANG C J. Experimental investigation on extraction of rubidium and cesium from dolomite containing rubidium and cesium. Guizhou: Guizhou University, 2016: 1-3

    3. [3]

      LIU L. Development and thinking of rubidium cesium[J]. Xinjiang Youse Jinshu, 2013,36(6):46-50. doi: 10.16206/j.cnki.65-1136/tg.2013.06.043

    4. [4]

      ZHENG X Y, ZHANG M G, XU X. Annals of salt lakes in China. Beijing: Science Press, 2002: 105-130

    5. [5]

      Ye X S, Wu Z J, Li W. Rubidium and cesium ion adsorption by an ammonium molybdophosphate-calcium alginate composite adsorbent[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2009,342(1/2/3):76-83.

    6. [6]

      Yang J Y, Luo X G, Yan T S. Recovery of cesium from saline lake brine with potassium cobalt hexacyanoferrate‑modified chrome‑tanned leather scrap adsorbent[J]. Colloid Surf. A‐Physicochem. Eng. Asp., 2017,537:268-280.

    7. [7]

      Xing P, Wang C, Chen Y, Ma B. Rubidium extraction from mineral and brine resources: A review[J]. Hydrometallurgy, 2021,203105644. doi: 10.1016/j.hydromet.2021.105644

    8. [8]

      Chen S Q, Hu J Y, Senjian H. A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade[J]. Sep. Purif. Technol., 2020,15(251)117340.

    9. [9]

      Loos N C, Ayrault S, Badillo V. Structure of copper-potassium hexacyanoferrate(Ⅱ) and sorption mechanisms of cesium[J]. J. Solid State Chem., 2004,177(6):1817-1828. doi: 10.1016/j.jssc.2004.01.018

    10. [10]

      Wang J L, Zhuang S T, Liu Y. Metal hexacyanoferrates-based adsorbents for cesium removal[J]. Coord. Chem. Rev., 2018,374:430-438. doi: 10.1016/j.ccr.2018.07.014

    11. [11]

      Dong C C, Deng X C, Guo X Q, Wang B, Ye X S, Fan J, Qing B J. Synthesis of potassium metal ferrocyanide/Al-MCM-41 with fast and selective adsorption of cesium[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2021,613126107. doi: 10.1016/j.colsurfa.2020.126107

    12. [12]

      Jung Y K, Choi U S, Ko Y G. Securely anchored prussian blue nanocrystals on the surface of porous PAAm sphere for high and selective cesium removal[J]. J. Hazard. Mater., 2021,420126654. doi: 10.1016/j.jhazmat.2021.126654

    13. [13]

      Yuan P, Liu D, Tan D Y, Liu K K, Yu H G, Zhong Y H, Yuan A H, Yu W B, He H P. Surface silylation of mesoporous/macroporous diatomite (diatomaceous earth) and its function in Cu(Ⅱ) adsorption: The effects of heating pretreatment[J]. Microporous Mesoporous Mat., 2013,170:9-19. doi: 10.1016/j.micromeso.2012.11.030

    14. [14]

      Wang X K, Wang J S, Teng W L, Du Y C, Wu J S, Guo F, Chen B B. Fabrication of highly efficient magnesium silicate and its adsorption behavior towards Cr(Ⅵ)[J]. Microporous Mesoporous Mat., 2021,323:1387-1811.

    15. [15]

      DU Y C, LI S H, GU H X, LI Y, WU J S, JIN C X. Mercapto/carboxyl modified diatomite: Adsorption properties to Pb(Ⅱ) and Cd(Ⅱ)[J]. Chinese J. Inorg. Chem., 2021,37(1):65-73.  

    16. [16]

      JIN C X, DU Y C, WU J S, NIU Y, WANG X K, LI Y. In-situ growing nanostructured magnesium silicate on diatomite: Adsorption properties of Cr(Ⅵ)[J]. Chinese J. Inorg. Chem., 2019,35(4):621-628.  

    17. [17]

      Du Y C, Zhen S, Wang J S, Ma Y L, Wu J S, Dai H X. FeOOH-MnO2/Sepiolite and Fe2O3-MnO2/Diatomite: Highly efficient adsorbents for the removal of As(Ⅴ)[J]. Appl. Clay Sci., 2022,222106491. doi: 10.1016/j.clay.2022.106491

    18. [18]

      ZHENG G W, DU Y C, HOU R Q, SUN G B, WANG J S, WU J S. Fabrication and highly efficient adsorption for Cs+ and Pb2+ of γ-AlOOH/Al2O3 modified diatomite[J]. Chinese J. Inorg. Chem., 2015,31(5):930-938.  

    19. [19]

      Mathieu Y, Vidal L, Valtchev V, Lebeau B. Preparation of γ-Al2O3 film by high temperature transformation of nanosized γ-AlOOH precursors[J]. New J. Chem., 2009,33(11):2255-2260. doi: 10.1039/b9nj00351g

    20. [20]

      Miao Y E, Wang R Y, Chen D, Liu Z Y, Liu T X. Electrospun self-standing membrane of hierarchical SiO@γ-AlOOH (Boehmite) core/sheath fibers for water remediation[J]. ACS Appl. Mater. Interfaces, 2012,4(10):5353-5359. doi: 10.1021/am3012998

    21. [21]

      Jbara A S, Othaman Z, Ati A A, Saeed M A. Characterization of γ-Al2O3 nanopowders synthesized by co-precipitation method[J]. Mater. Chem. Phys., 2017,188:24-29. doi: 10.1016/j.matchemphys.2016.12.015

    22. [22]

      Wang Z J, Du H, Gong J H, Yang S G, Ma J H, Xu J. Facile synthesis of hierarchical flower-like γ-AlOOH films via hydrothermal route on quartz surface[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2014,450:76-82. doi: 10.1016/j.colsurfa.2014.03.014

    23. [23]

      Zong Y L, Zhang Y D, Lin X Y, Ye D, Qiao D, Zeng S N. Facile synthesis of potassium copper ferrocyanide composite particles for selective cesium removal from wastewater in the batch and continuous processes[J]. RSC Adv., 2017,7(54):31352-31364.  

    24. [24]

      Hu J Y, Chen S Q, Zhang N L, Wang Z, Guo Y F, Deng T L. Porous composite sphere CMC-KCuFC-PEG for efficient cesium removal from wastewater[J]. New J. Chem., 2019,43(24):9658-9665. doi: 10.1039/C9NJ01697J

    25. [25]

      Xiang S L, Zhang X, Tao Q Q, Dai Y. Adsorption of cesium on mesoporous SBA-15 material containing embedded copper hexacyanoferrate[J]. J. Radioanal. Nucl. Chem., 2019,320(3):609-619. doi: 10.1007/s10967-019-06523-8

    26. [26]

      Mohammadi S, Faghihian H. Elimination of Cs+ from aquatic systems by an adsorbent prepared by immobilization of potassium copper hexacyanoferrate on the SBA-15 surface: Kinetic, thermodynamic, and isotherm studies[J]. Environ. Sci. Pollut. Res., 2019,26(12):12055-12070. doi: 10.1007/s11356-019-04623-2

    27. [27]

      Kim Y, Eom H H, Kim D H, Harbottle D, Lee J W. Adsorptive removal of cesium by electrospun nanofibers embedded with potassium copper hexacyanoferrate[J]. Sep. Purif. Technol., 2021,255117745. doi: 10.1016/j.seppur.2020.117745

    28. [28]

      Nayl A A, Ahmed I M, Abd-Elhamid A I, Aly H F, Attallah M F. Selective sorption of 134Cs and 60Co radioisotopes using synthetic nanocopper ferrocyanide-SiO2 materials[J]. Sep. Purif. Technol., 2020,234116060. doi: 10.1016/j.seppur.2019.116060

    29. [29]

      Zhang H G, Hodges C S, Mishra P K, Yoon J Y, Hunter T N, Lee J W, Harbottle D. Bio-inspired preparation of clay-hexacyanoferrate composite hydrogels as super adsorbents for Cs+[J]. ACS Appl. Mater. Interfaces, 2020,12(29):33173-33185. doi: 10.1021/acsami.0c06598

    30. [30]

      Seo Y, Hwang Y. Prussian blue immobilized on covalent organic polymer-grafted granular activated carbon for cesium adsorption from water[J]. J. Environ. Chem. Eng., 2021,9(5)105950. doi: 10.1016/j.jece.2021.105950

    31. [31]

      Kim Y, Eom H H, Kim Y K, Harbottle D, Lee J W. Effective removal of cesium from wastewater via adsorptive filtration with potassium copper hexacyanoferrate-immobilized and polyethyleneimine-grafted graphene oxide[J]. Chemosphere, 2020,250126262. doi: 10.1016/j.chemosphere.2020.126262

    32. [32]

      Chen S Q, Dong Y N, Wang H H, Sun J J, Wang J F, Zhang S J, Dong H F. Highly efficient and selective cesium recovery from natural brine resources using mesoporous Prussian blue analogs synthesized by ionic liquid-assisted strategy[J]. Resour. Conserv. Recycl., 2022,186106542. doi: 10.1016/j.resconrec.2022.106542

  • 加载中
    1. [1]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    2. [2]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    3. [3]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    4. [4]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    5. [5]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    6. [6]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    7. [7]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    8. [8]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    9. [9]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    10. [10]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    11. [11]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    12. [12]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    15. [15]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    16. [16]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    17. [17]

      Hong Chen Mao-Yin Ran Long-Hua Li Xin-Tao Wu Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397

    18. [18]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    19. [19]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    20. [20]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

Metrics
  • PDF Downloads(2)
  • Abstract views(798)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return