Citation: Ming GAO, Tong-Qing ZHANG, Jian-Jun LI, Jia-Qi HU, Ming-Yan JIN, Yan ZHAO, Hong-Yang WANG, Chang-Guo XUE. Preparition and multiple-dye adsorption of magnetic chitosan/Fe3O4/graphene oxide adsorbent[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 723-734. doi: 10.11862/CJIC.2023.042 shu

Preparition and multiple-dye adsorption of magnetic chitosan/Fe3O4/graphene oxide adsorbent

Figures(8)

  • To improve the multiple-dye adsorption performance of the adsorbent and endow it with magnetism, a magnetic composite adsorbent composed of chitosan, magnetite nanoparticles, and graphene oxide (CS/Fe3O4/GO) was prepared by a simple co-precipitation method.Careful structural investigations indicated that magnetite nanoparticles covered by CS were evenly distributed on the surface of graphene oxide.CS, Fe3O4, and GO were chemically bonded together to form a stable composite material.The magnetism of CS/Fe3O4/GO was tested as 42.5 emu·g-1, which is strong enough for efficient solid-liquid separation under an applied magnetic field.CS/Fe3O4/GO was used to adsorb multiple synthetic dyes, including methylene blue (MB), Congo red (CR), and methyl orange (MO), and showed high multi-dye adsorption performance.It is found that the adsorption of MB, MO, and CR under optimal conditions reached 210.6, 258.6, and 308.9 mg·g-1, respectively.The effect of pH, initial concentration, and contact time on the adsorption was investigated.Recycling experiments showed that CS/Fe3O4/GO had excellent
  • 加载中
    1. [1]

      Solano M A, Galan J, Vallejo W, Arana V A, Grande -Tovar C D. Chitosan beads incorporated with graphene oxide/titanium dioxide nanoparticles for removing an anionic dye[J]. Appl. Sci., 2021,11(20)9439. doi: 10.3390/app11209439

    2. [2]

      Sheshmani S, Ashori A, Hasanzadeh S. Removal of acid orange 7 from aqueous solution using magnetic graphene/chitosan: A promising nano-adsorbent[J]. Int. J. Biol. Macromol., 2014,68:218-244. doi: 10.1016/j.ijbiomac.2014.04.057

    3. [3]

      Le T T N, Le V T, Dao M U, Nguyen Q V, Vu T T, Nguyen M H, Tran D L, Le H S. Preparation of magnetic graphene oxide/chitosan composite beads for effective removal of heavy metals and dyes from aque-ous solutions[J]. Chem. Eng. Commun., 2019,206(10):1337-1352. doi: 10.1080/00986445.2018.1558215

    4. [4]

      Nekouei M N, Shahbazi A. A novel environmental -friendly nanobio-composite synthesis by EDTA and chitosan functionalized magnetic graphene oxide for high removal of rhodamine B: Adsorption mechanism and separation property[J]. Chemosphere, 2019,218:715-725. doi: 10.1016/j.chemosphere.2018.11.109

    5. [5]

      de la Luz-Asunción M, Pérez-Ramírez E E, Martínez-Hernández A L, García-Casillas P E, Luna-Bárcenas J G, Velasco-Santos C. Adsorption and kinetic study of reactive red 2 dye onto graphene oxides and graphene quantum dots[J]. Diam. Relat. Mater., 2020,109108002. doi: 10.1016/j.diamond.2020.108002

    6. [6]

      Alves D, Healy B, Yu T, Breslin C B. Graphene -based materials immobilized within chitosan: Applications as adsorbents for the removal of aquatic pollutants[J]. Materials, 2021,14(13)3655. doi: 10.3390/ma14133655

    7. [7]

      Sheshmani S, Mashhadi S. Potential of magnetite reduced graphene oxide/chitosan nanocomposite as biosorbent for the removal of dyes from aqueous solutions[J]. Polym. Compos., 2018,39:E457-E462. doi: 10.1002/pc.24608

    8. [8]

      Van H N, Khong T T, Quyen T T H, Trung T S. One-step facile synthesis of mesoporous graphene/Fe3O4/chitosan nanocomposite and its adsorption capacity for a textile dye[J]. J. Water Process. Eng., 2016,9:170-178. doi: 10.1016/j.jwpe.2015.12.005

    9. [9]

      Song X S, Zhou J, Fan J S, Zhang Q Q, Wang S F. Preparation and adsorption properties of magnetic graphene oxide composites for the removal of methylene blue from water[J]. Mater. Res. Express, 2022,9(2)020002. doi: 10.1088/2053-1591/ac52c6

    10. [10]

      Sadiq A C, Olasupo A, Ngah W S W, Rahim N Y, Suah F B M. A decade development in the application of chitosan -based materials for dye adsorption: A short review[J]. Int. J. Biol. Macromol., 2021,191:1151-1163. doi: 10.1016/j.ijbiomac.2021.09.179

    11. [11]

      HUANG K L, CHEN J, LIU S Q, LI G Y. Chemical modification and coating mechanism of magnetic Fe3O4/chitosan[J]. Chinese J. Inorg. Chem, 2007,23(8):1491-1495. doi: 10.3321/j.issn:1001-4861.2007.08.033

    12. [12]

      Zhang C L, Chen Z Z, Guo W, Zhu C W, Zou Y J. Simple fabrication of chitosan/graphene nanoplates composite spheres for efficient adsorption of acid dyes from aqueous solution[J]. Int. J. Biol. Macromol., 2018,112:1048-1054. doi: 10.1016/j.ijbiomac.2018.02.074

    13. [13]

      Kosowska K, Domalik-Pyzik P, Krok-Borkowicz M, Chlopek J. Synthesis and characterization of chitosan/reduced graphene oxide hybrid composites[J]. Materials, 2019,12(13)2077. doi: 10.3390/ma12132077

    14. [14]

      LI J J, BAO X, WU X F, ISLAM N, LIU Y, QIAO S Y, YU Z W, ZHU J B. Magnetic chitosan micron spheres: Synthesis and adsorption property for Cu2+[J]. Chinese J. Inorg. Chem., 2017,33(3):383-388.  

    15. [15]

      Wang Y, Xia G M, Wu C, Sun J, Song R, Huang W. Porous chitosan doped with graphene oxide as highly effective adsorbent for methyl orange and amido black 10B[J]. Carbohydr. Polym., 2015,115:686-693. doi: 10.1016/j.carbpol.2014.09.041

    16. [16]

      WANG J H, CHEN Y, LIU N, SUN T T, ATIF S. Chitosan modified magnetic carbon-based adsorbent: Preparation and adsorption mechanism for Cr(Ⅲ)-EDTA in water[J]. Chinese J. Inorg. Chem., 2020,36(7):1249-1258.  

    17. [17]

      Zhang Y, Li H J, Li M C, Xin M H. Adsorption of aniline on aminated chitosan/graphene oxide composite material[J]. J. Mol. Struct., 2020,1209127973. doi: 10.1016/j.molstruc.2020.127973

    18. [18]

      Tahira I, Aslam Z, Abbas A, Monim-Ul-Mehboob M, Ali S, Asghar A. Adsorptive removal of acidic dye onto grafted chitosan: A plausible grafting and adsorption mechanism[J]. Int. J. Biol. Macromol., 2019,136:1209-1218. doi: 10.1016/j.ijbiomac.2019.06.173

    19. [19]

      Croitoru A M, Ficai A, Ficai D, Trusca R, Dolete G, Andronescu E, Turculet S C. Chitosan/graphene oxide nanocomposite membranes as adsorbents with applications in water purification[J]. Materials, 2020,13(7)1687. doi: 10.3390/ma13071687

    20. [20]

      El Rouby W M A, Farghali A A, Sadek M A, Khalil W F. Fast Removal of Sr(Ⅱ) from water by graphene oxide and chitosan modified graphene oxide[J]. J. Inorg. Organomet. Polym. Mater., 2018,28(6):2336-2349. doi: 10.1007/s10904-018-0885-9

    21. [21]

      Wang Z Q, Zhang G H, Li Y H. Preparation of chitosan/polyacrylamide/graphene oxide composite membranes and study of their methylene blue adsorption properties[J]. Materials, 2020,13(19)4407. doi: 10.3390/ma13194407

    22. [22]

      Du W J, Ma R, Liu Z Y, Yang G, Chen T. Study on the adsorption properties of graphene oxide/Laponite RD/chitosan composites[J]. Materials, 2021,14(12)3224. doi: 10.3390/ma14123224

    23. [23]

      Wang Y, Liu X, Wang H F, Xia G M, Huang W, Song R. Microporous spongy chitosan monoliths doped with graphene oxide as highly effective adsorbent for methyl orange and copper nitrate (Cu(NO3)2) ions[J]. J. Colloid Interface Sci., 2014,416:243-251. doi: 10.1016/j.jcis.2013.11.012

    24. [24]

      Wu Y, Bian Y Q, Yang F, Ding Y, Chen K X. Preparation and properties of chitosan/graphene modified bamboo fiber fabrics[J]. Polymers., 2019,11(10)1540. doi: 10.3390/polym11101540

    25. [25]

      Du Q J, Sun J K, Li Y H, Yang X X, Wang X H, Wang Z H, Xia L H. Highly enhanced adsorption of Congo red onto graphene oxide/chitosan fibers by wet-chemical etching off silica nanoparticles[J]. Chem. Eng. J., 2014,245:99-106. doi: 10.1016/j.cej.2014.02.006

    26. [26]

      Huang C Q, Liao H Y, Ma X H, Xiao M, Liu X H, Gong S, Shu X G, Zhou X H. Adsorption performance of chitosan Schiff base towards anionic dyes: Electrostatic interaction effects[J]. Chem. Phys. Lett., 2021,780138958. doi: 10.1016/j.cplett.2021.138958

    27. [27]

      Chen X Y, He L D. Microwave irradiation assisted preparation of chitosan composite microsphere for dye adsorption[J]. Int. J. Polym. Sci., 2017,2017:1-8.

    28. [28]

      Lv S H, Zhu L L, Li Y, Jia C M, Sun S Y. The adsorption capacity of GONs/CMC/Fe3O4 magnetic composite microspheres and applications for purifying dye wastewater[J]. Materials, 2017,10(1)58. doi: 10.3390/ma10010058

    29. [29]

      Zang J, Wu T T, Song H H, Zhou N, Fan S S, Xie Z X, Tang J. Removal of tetracycline by hydrous Ferric oxide: Adsorption kinetics, isotherms, and mechanism[J]. Int. J. Environ. Res. Public. Health, 2019,16(22)4580. doi: 10.3390/ijerph16224580

    30. [30]

      Paliwal M K, Sonia Y K, Meher S K. Hierarchically structured β -Ni(OH)2 clusters: A uniquely efficient aqueous phase pollutant adsorbent for multiple anionic dyes and heavy metal ions[J]. Mater. Today Chem., 2021,22100551. doi: 10.1016/j.mtchem.2021.100551

    31. [31]

      Cho S Y, Kim T. Adsorption equilibria of reactive dye onto highly polyaminated porous chitosan beads[J]. Korean J. Chem. Eng., 2005,22(5):691-696. doi: 10.1007/BF02705784

    32. [32]

      Abu-Nada A, Abdala A, Mckay G. Removal of phenols and dyes from aqueous solutions using graphene and graphene composite adsorption: A review[J]. J. Environ. Chem. Eng., 2021,9(5)150858.

    33. [33]

      Aramesh N, Bagheri A R, Bilal M. Chitosan-based hybrid materials for adsorptive removal of dyes and underlying interaction mechanisms[J]. Int. J. Biol. Macromol., 2021,183:399-422. doi: 10.1016/j.ijbiomac.2021.04.158

    34. [34]

      Liu Y Z, Zheng H L, Han Y W, Wu Y W, Wang Y, Liu Y D, Feng L. Amphiphilic magnetic copolymer for enhanced removal of anionic dyes: Fabrication, application and adsorption mechanism[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2021,623126674. doi: 10.1016/j.colsurfa.2021.126674

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    4. [4]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    5. [5]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    6. [6]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    7. [7]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    8. [8]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    9. [9]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    10. [10]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    11. [11]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    12. [12]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    13. [13]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    14. [14]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    15. [15]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    16. [16]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    17. [17]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    18. [18]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    19. [19]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    20. [20]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

Metrics
  • PDF Downloads(6)
  • Abstract views(886)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return