Synthesis and catalytic activity in n-hexane isomerization of EU-1 zeolite
- Corresponding author: Dong-Sen MAO, dsmao@sit.edu.cn Jia-Wei TENG, tengjw@sinopec.com
Citation: Tong ZHANG, Jing SHI, Zhao-Teng XUE, Dong-Sen MAO, Jia-Wei TENG. Synthesis and catalytic activity in n-hexane isomerization of EU-1 zeolite[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 659-670. doi: 10.11862/CJIC.2023.038
Casci J L, Lowe B M, Whittam T V. Zeolite EU‐1: EP81302343.9.1981‐12‐23.
Guillon E, Sanchez E. Modified EU‐1 zeolite and its use in the isomerization of aromatic C8 compounds: US20080281138.2008‐11‐13.
Patarin J, Guillon E, Rouleau L, Goergen S. Preparation of a porous composite material based on EU‐1 zeolite and its implementation in the isomerization of C8 aromatics: US20090062585.2009‐05‐05.
Teketel S, Skistad W, Benard S, Olsbye U, Lillerud K P, Beato P, Svelle S. Shape selectivity in the conversion of methanol to hydrocarbons: The catalytic performance of one-dimensional 10-ring zeolites: ZSM-22, ZSM-23, ZSM-48, and EU-1[J]. ACS Catal., 2011,2(1):26-37.
Hu S, Gong Y J, Xu Q H, Liu X L, Zhang Q, Zhang L L, Dou T. Highly selective formation of propylene from methanol over high-silica EU-1 zeolite catalyst[J]. Catal.Commun., 2012,28:95-99. doi: 10.1016/j.catcom.2012.08.011
Ahmed M H M, Masuda T, Muraza O. The role of acidity, side pocket, and steam on maximizing propylene yield from light naphtha cracking over one-dimensional zeolites: Case studies of EU-1 and disordered ZSM-48[J]. Fuel, 2019,258116034. doi: 10.1016/j.fuel.2019.116034
Souverijns W, Rombouts L, Martens J A, Jacobs P A. Molecular shape selectivity of EUO zeolites[J]. Microporous Mater., 1995,4(2):123-130.
Pradhan A R, Kotasthane A N, Rao B S. Isopropylation of benzene over EU-1 zeolite catalyst[J]. Appl.Catal., 1991,72(2):311-319. doi: 10.1016/0166-9834(91)85058-4
WANG J W, GUI S X, JING Z H. Advance in research on xylene isomerization catalyst[J]. Chemical Industry and Engineering Progress, 2004,23(3):244-247. doi: 10.3321/j.issn:1000-6613.2004.03.003
XU H Q, DU L J, LIU Q J, JIA L M. Study on the xylene isomerization performance of several molecular sieve catalysts[J]. Petroleum Processing and Petrochemicals, 2012,43(11):55-58. doi: 10.3969/j.issn.1005-2399.2012.11.013
Wu Q M, Liu X L, Zhu L F, Ding L H, Gao P, Wang X, Pan S X, Bian C Q, Meng X J, Xu J, Deng F, Maurer S, Müller U, Xiao F S. Solvent-free synthesis of zeolites from anhydrous starting raw solids[J]. J.Am.Chem.Soc., 2015,137(3):1052-1055. doi: 10.1021/ja5124013
Xu H, Zhu J, Wang X, Shen C, Meng S S, Zheng K, Lei C, Zhu L F. Sustainable route for synthesizing aluminosilicate EU‑1 zeolite[J]. Molecules, 2021,26(5):1462-1472. doi: 10.3390/molecules26051462
Cacsi J L, Whittam T V, Lowe B M//David O, Attilio B. Proceeding of the sixth international zeolites conference. Reno: Butterworths & Sevenoaks, 1983: 894‐904
Dodwell G W, Denkewicz R P, Sand L B. Crystallization of EU-1 and EU-2 in alkali and alkali-free systems[J]. Zeolites, 1985,5(3):153-157. doi: 10.1016/0144-2449(85)90023-5
Xu Q H, Gong Y J, Xu W J, Xu J, Deng F, Dou T. Synthesis of high-silica EU-1 zeolite in the presence of hexamethonium ions: A seeded approach for inhibiting ZSM-48[J]. J.Colloid Interface Sci., 2011,358(1):252-260. doi: 10.1016/j.jcis.2011.03.027
Agostini G, Lamberti C, Palin L, Milanesio M, Danilina N, Xu B, Janousch M, Bokhoven J A V. In situ XAS and XRPD parametric rietveld refinement to understand dealumination of Y zeolite catalyst[J]. J.Am.Chem.Soc., 2010,132(2):667-678. doi: 10.1021/ja907696h
LI X M, JIA J X, SUN X Y, FAN H F, WANG H. Effects of hydrothermal and nitric acid treatment on modified Y zeolite[J]. Pertochemical Technology, 2014,434(4):412-419. doi: 10.3969/j.issn.1000-8144.2014.04.010
Ahmed M H M, Muraza O, Amer A M A, Miyake K, Nishiyama N. Development of hierarchical EU-1 zeolite by sequential alkaline and acid treatments for selective dimethyl ether to propylene (DTP)[J]. Appl.Catal.A-Gen., 2015,497:127-134. doi: 10.1016/j.apcata.2015.03.011
Deldari H. Suitable catalysts for hydroisomerization of long-chain normal paraffins[J]. Appl.Catal.A-Gen., 2005,293:1-10. doi: 10.1016/j.apcata.2005.07.008
JIA X S, MA S T, SUO Y H, LIANG T, LI G X, WANG Y J. Research progress of C5-C8 alkanes isomerization catalysts[J]. Chemistry and Adhesion, 2017,39(2):126-131.
Guisnet M. "Ideal" bifunctional catalysis over Pt-acid zeolites[J]. Catal.Today, 2013,218:123-134.
Wang W, Liu C J, Wu W. Bifunctional catalysts for the hydroisomerization of n-alkanes: The effects of metal-acid balance and textural structure[J]. Catal.Sci.Technol., 2019,9:4162-4187. doi: 10.1039/C9CY00499H
Lyu Y C, Yu Z M, Yang Y, Wang X H, Zhao X X, Liu X M, Yan Z F. Metal-acid balance in the in-situ solid synthesized Ni/SAPO-11 catalyst for n-hexane hydroisomerization[J]. Fuel, 2019,243:398-405. doi: 10.1016/j.fuel.2019.01.013
Rao G N, Joshi P N, Kotasthane A N, Ratnasamy P. Synthesis and characterization of high-silica EU-1[J]. Zeolites, 1989,9(6):483-490. doi: 10.1016/0144-2449(89)90042-0
Jansen J C, Wilson S T. The preparation of oxide molecular sieves A.Synthesis of zeolites[J]. Stud.Surf.Sci.Catal., 2001,137:175-227.
Bu X H, Feng P Y, Stucky G D. Large-cage zeolite structures with multidimensional 12-ring channels[J]. Science, 1997,278(5346):2080-2085. doi: 10.1126/science.278.5346.2080
Lawton S L, Rohrbaugh W J. The framework topology of ZSM-48, a novel zeolite containing rings of three (Si Al)-O species[J]. Science, 1990,247(4948):1319-1322. doi: 10.1126/science.247.4948.1319
Davis M E, Lobo R F. Zeolite and molecular sieve synthesis[J]. Chem.Mater., 1992,4(4):756-768.
Karimi R, Bayati B, Aghdam N C, Ejtemaee M, Babaluo A A. Studies of the effect of synthesis parameters on ZSM-5 nanocrystalline material during template-hydrothermal synthesis in the presence of chelating agent[J]. Powder Technol., 2012,229:229-236.
Li X F, Liu X Z, Zhang Y T, Liu Y M, Sun X T, Ren P C, Gao M, Dou T. Controllable synthesis of EU-1 molecular sieve with high SiO2/Al2O3 ratios in thermodynamic stable sol system[J]. J.Porous Mater., 2016,23:1557-1565.
WU M L. Study on the effect of hydrothermal treatment on the acidity and hexene aromatization of Zn/ZSM‐5. Beijing: China University of Petroleum, 2019: 1‐77
Arnold A, Hunger M, Weitkamp J. Dry-gel synthesis of zeolites[Al]EU-1 and[Ga]EU-1[J]. Microporous Mesoporous Mater., 2004,8(1):205-213.
HAO J Q, ZHOU J, TENG J W, WANG Y D, XIE Z K. Effects of Pt/ZSM-5 metal-acid intimacy on the performance for hydroisomerization of n-hexane[J]. Chemical Reaction Engineering and Technology, 2022,38(4):310-317.
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
Yinwu Su , Xuanwen Zheng , Jianghui Du , Boda Li , Tao Wang , Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092
Cheng Zheng , Shiying Zheng , Yanping Zhang , Shoutian Zheng , Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Hongwei Ma , Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
The blue dotted lines are positions of EU‐1 characteristic peaks and the red dotted lines are positions of ZSM‐48 characteristic peaks
(a) E‐1; (b) E‐2; (c) E‐3
(a) x=160; (b) x=200; (c) x=300; (d) x=400; (e) x=600
(a) E‐10; (b) E‐11; (c) E‐12
The blue dotted lines are positions of EU‐1 characteristic peaks and the red dotted lines are positions of ZSM‐48 characteristic peaks
The blue dotted lines are positions of EU‐1 characteristic peaks and the red dotted lines are positions of ZSM‐48 characteristic peaks
(a) E‐21; (b) E‐22; (c) E‐24; (d) E‐26
(a) E‐6; (b) E‐9; (c) E‐12
Relative content of aluminum a=(10/x)/(10/x+y+r); Relative content of the directing agent b=y/(10/x+y+r); Relative content of seed c=r/(10/x+y+r)