Citation: Yu-Hong ZHU, Bao-Jin CHU. Preparation and enhanced thermal conductivity of poly(vinylidene fluoride-trifluoroethylene) (55/45)/0.75BiFeO3-0.25BaTiO3 composite for electrocaloric application[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 716-722. doi: 10.11862/CJIC.2023.035 shu

Preparation and enhanced thermal conductivity of poly(vinylidene fluoride-trifluoroethylene) (55/45)/0.75BiFeO3-0.25BaTiO3 composite for electrocaloric application

  • Corresponding author: Bao-Jin CHU, chubj@ustc.edu.cn
  • Received Date: 7 September 2022
    Revised Date: 3 March 2023

Figures(6)

  • In this work, the (P (VDF-TrFE)(55/45)) was used as polymer matrix and 0.75BiFeO3-0.25BaTiO3(BFO-BTO) nanofiber was used as fillers to enhance the thermal conductivity of the copolymer.The enhanced thermal conductivity was achieved by adding a small amount of BFO-BTO nanofibers to the copolymer.A thermal conductivity of the composite film with 2% nanofibers was 0.21 W·m-1·K-1 at 75℃, which was nearly twice that of the P (VDF-TrFE)(55/45) copolymer film.At the same time, the electrocaloric effect (ECE) of the copolymer almost remained unchanged after the addition of nanofibers.The results suggest that the addition of BFO-BTO nanofibers is effective to improve the thermal conductivity of P (VDF-TrFE)(55/45) copolymer while maintaining high ECE.
  • 加载中
    1. [1]

      Grünebohm A, Ma Y B, Marathe M, Xu B X, Albe K, Kalcher C, Meyer K C, Shvartsman V V, Lupascu D C, Ederer C. Origins of the inverse electrocaloric effect[J]. Energy Technol., 2018,6(8):1491-1511. doi: 10.1002/ente.201800166

    2. [2]

      Li B, Kawakita Y, Ohira-Kawamura S, Sugahara T, Wang H, Wang J F, Chen Y N, Kawaguchi S I, Kawaguchi S, Ohara K. Colossal barocaloric effects in plastic crystals[J]. Nature, 2019,567(7749):506-510. doi: 10.1038/s41586-019-1042-5

    3. [3]

      Shi J Y, Han D L, Li Z C, Yang L, Lu S G, Zhong Z F, Chen J P, Zhang Q M, Qian X S. lectrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration[J]. Joule, 2019,3(5):1200-1225. doi: 10.1016/j.joule.2019.03.021

    4. [4]

      Kobeko P, Kurtschatov J. Pielectric properties of Rochelle salt crystals[J]. Zeitschrift Fur Physik, 1930,66(3/4):192-205.

    5. [5]

      Mischenko A S, Zhang Q M, Scott J F, Whatmore R W, Mathur N D. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3[J]. Science, 2006,311(5765):1270-1271. doi: 10.1126/science.1123811

    6. [6]

      Neese B, Chu B J, Lu S G, Wang Y, Furman E, Zhang Q M. Large electrocaloric effect in ferroelectric polymers near room temperature[J]. Science, 2008,321(5890):821-823. doi: 10.1126/science.1159655

    7. [7]

      Han F, Bai Y, Qiao L J, Guo D. A systematic modification of the large electrocaloric effect within a broad temperature range in rare earth doped BaTiO3 ceramics[J]. J. Mater. Chem. C, 2016,4(9):1842-1849. doi: 10.1039/C5TC04209G

    8. [8]

      Jia Y B, Sungtaek Y. A solid-state refrigerator based on the electrocaloric effect[J]. Appl. Phys. Lett., 2012,100(24)242901. doi: 10.1063/1.4729038

    9. [9]

      Scott J. Electrocaloric materials[J]. Ann. Rev. Mater. Res., 2011,41229240.

    10. [10]

      Chen X, Xu W H, Lu B, Zhang T, Wang Q, Zhang Q M. Towards electrocaloric heat pump-A relaxor ferroelectric polymer exhibiting large electrocaloric response at low electric field[J]. Appl. Phys. Lett., 2018,113(11)113902. doi: 10.1063/1.5048599

    11. [11]

      Jian X D, Lu B, Li D D, Yao Y B, Tao T, Liang B, Guo J H, Zeng Y J, Chen J L, Lu S G. Direct measurement of large electrocaloric effect in Ba (ZrxTi1-x) O3 ceramics[J]. ACS Appl. Mater. Interfaces, 2018,10(5):4801-4807. doi: 10.1021/acsami.7b15933

    12. [12]

      Choy C. Thermal conductivity of polymers[J]. Polymer, 1977,18(10):984-1004. doi: 10.1016/0032-3861(77)90002-7

    13. [13]

      Dos Santos W, Iguchi C Y, Gregorio Jr R. Thermal properties of poly (vinilidene fluoride) in the temperature range from 25 to 210℃[J]. Polym. Test., 2008,27(2):204-208. doi: 10.1016/j.polymertesting.2007.10.005

    14. [14]

      Chen X Z, Li X Y, Qian X S, Lin M, Wu S, Shen Q D, Zhang Q M. A nanocomposite approach to tailor electrocaloric effect in ferroelectric polymer[J]. Polymer, 2013,54(20):5299-5302. doi: 10.1016/j.polymer.2013.07.052

    15. [15]

      Zhang G Z, Li Q, Gu H M, Jiang S L, Han K, Gadinski M R, Haque M A, Zhang Q M, Wang Q. Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration[J]. Adv. Mater., 2015,27(8):1450-1454. doi: 10.1002/adma.201404591

    16. [16]

      Zhang G Z, Fan B Y, Zhao P, Liu Y, Liu F H, Jiang S L, Zhang S L, Li H L, Wang Q. Ferroelectric polymer nanocomposites with complementary nanostructured fillers for electrocaloric cooling with high power density and great efficiency[J]. ACS Appl. Energy Mater., 2018,1(3):1344-1354. doi: 10.1021/acsaem.8b00052

    17. [17]

      Aziguli H, Chen X, Liu Y, Yang G, Yu P, Wang Q. Enhanced electrocaloric effect in lead-free organic and inorganic relaxor ferroelectric composites near room temperature[J]. Appl. Phys. Lett., 2018,112(19)193902. doi: 10.1063/1.5028459

    18. [18]

      Zhang X Y, Yang X, Wang Z P, Pan Q, Chu B J, Zuo R Z. Enhanced magnetoelectric response of Mn doped BiFeO3 based multiferroic ceramics[J]. J. Mater. Sci.-Mater. Electron, 2022,33:15520-15532. doi: 10.1007/s10854-022-08458-5

    19. [19]

      Hu X P, Che Y P, Zhang Z, Shen Q D, Chu B J. BiFeO3-BaTiO3/P (VDF TrFE) multifunctional polymer nanocomposites[J]. ACS Appl. Electron. Mater., 2021,3(2):743-751. doi: 10.1021/acsaelm.0c00926

    20. [20]

      Liu J, Zhou Y, Hu X P, Chu B J. Flexoelectric effect in PVDF-based copolymers and terpolymers[J]. Appl. Phys. Lett., 2018,112(23)232901. doi: 10.1063/1.5028344

    21. [21]

      Zhou Y, Liu J, Hu X P, Chu B J, Chen S T, Salem D. Flexoelectric effect in PVDF-based polymers[J]. IEEE Trans. Dielectr. Electr. Insul., 2017,24(2):727-731. doi: 10.1109/TDEI.2017.006273

    22. [22]

      Chu B J, Lin M R, Neese B, Zhou X, Chen Q, Zhang Q M. Large enhancement in polarization response and energy density of poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) by interface effect in nanocomposites[J]. Appl. Phys. Lett., 2007,91(12)122909. doi: 10.1063/1.2786839

    23. [23]

      Rožič B, Malič B, Uršič H, Holc H, Kosec M, Neese B, Zhang Q M, Kutnjak Z. Direct measurements of the giant electrocaloric effect in soft and solid ferroelectric materials[J]. Ferroelectrics, 2010,405(1):26-31. doi: 10.1080/00150193.2010.482884

    24. [24]

      Kumar A, Thakre A, Jeong D Y, Ryu J. Prospects and challenges of the electrocaloric phenomenon in ferroelectric ceramics[J]. J. Mater. Chem. C, 2019,7(23):6836-6859. doi: 10.1039/C9TC01525F

    25. [25]

      Yusuf A H, Chen L, Geng X W, Jiang Z Y, Zhang F, Luo A B, Hu H L. Electrocaloric effect of structural configurated ferroelectric polymer nanocomposites for solid state refrigeration[J]. ACS Appl. Mater. Interfaces, 2021,13:46681-46693. doi: 10.1021/acsami.1c13614

    26. [26]

      Tavman I H, Akmcl H. Transverse thermal conductivity of fiber reinforced polymer composites[J]. Int. Commun. Heat Mass Transf., 2000,27(2):253-261. doi: 10.1016/S0735-1933(00)00106-8

    27. [27]

      Di C, Pan J H, Dong S T, Lv Y Y, Yan X J, Zhou J, Yao A H, Lu H, Gusev V E, Chen Y F, Lu M H. Ultralow cross-plane lattice thermal conductivity caused by Bi-O/Bi-O interfaces in natural superlatticelike single crystals[J]. CrystEngComm, 2019,216261. doi: 10.1039/C9CE01139K

    28. [28]

      Wong Y W, Hui N M, Ong E L, Chan H L W, Choy C L. Specific heat and thermal diffusivity of vinylidene fluoride/trifluoroethylene copolymers[J]. J. Appl. Polym. Sci., 2003,89(12):3160-3166. doi: 10.1002/app.12551

  • 加载中
    1. [1]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    2. [2]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    3. [3]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    8. [8]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    9. [9]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    15. [15]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    20. [20]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

Metrics
  • PDF Downloads(10)
  • Abstract views(551)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return