Citation: Xiao-Min HOU, Si-Fu TANG. Heterometallic uranyl sulfophosphonates: Synthesis, crystal structures, and fluorescence properties[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 746-752. doi: 10.11862/CJIC.2023.034 shu

Heterometallic uranyl sulfophosphonates: Synthesis, crystal structures, and fluorescence properties

  • Corresponding author: Si-Fu TANG, tangsf@qau.edu.cn
  • Received Date: 2 October 2022
    Revised Date: 17 January 2023

Figures(5)

  • It is still a great challenge to construct heterometallic uranyl phosphonates. In this work, a series of isostructural heterometallic uranyl sulfophosphonates, namely [UO2M(L)2(H2O)4], where M=Mn (1), Co (2), Ni (3), Zn (4), Cd (5) and Et2L=diethyl ((phenylsulfonyl)methyl)phosphonate, have been successfully synthesized and systematically characterized. The sulfonyl group is not involved in coordination with the metal centers, whereas the phosphonate group is fully deprotonated and connects with two uranyl cations and one transition metal ion, affording a 2D layered crystal structure. It was found that the luminescent emission was almost totally quenched in the presence of Mn(Ⅱ), Co(Ⅱ), and Ni(Ⅱ), whereas showed strong emissions in the presence of Zn(Ⅱ) and Cd(Ⅱ).
  • 加载中
    1. [1]

      Loiseau T, Mihalcea I, Henry N, Volkringer C. The crystal chemistry of uranium carboxylates[J]. Coord. Chem. Rev., 2014,266-267:69-109. doi: 10.1016/j.ccr.2013.08.038

    2. [2]

      Andrews M B, Cahill C L. Uranyl bearing hybrid materials: Synthesis, speciation, and solid-state structures[J]. Chem. Rev., 2013,113:1121-1136. doi: 10.1021/cr300202a

    3. [3]

      Wu D, Mo X F, He P, Li H R, Yi X Y, Liu C. 3D uranyl organic frameworks supported by rigid octadentate carboxylate ligand: Synthesis, structure diversity, and luminescence properties[J]. Chem.-Eur. J., 2021,27:10313-10322. doi: 10.1002/chem.202100099

    4. [4]

      Li F Z, Geng J S, Hu K Q, Yu J P, Liu N, Chai Z F, Mei L, Shi W Q. Proximity effect in uranyl coordination of the cucurbit[6]uril-bipyridinium pseudorotaxane ligand for promoting host-guest synergistic chelating[J]. Inorg. Chem., 2021,60:10522-10534. doi: 10.1021/acs.inorgchem.1c01177

    5. [5]

      Thuéry P, Harrowfield J. Ni(2,2':6',2″-terpyridine-4'-carboxylate)2 zwitterions and carboxylate polyanions in mixed-ligand uranyl ion complexes with a wide range of topologies[J]. Inorg. Chem., 2022,61:9725-9745. doi: 10.1021/acs.inorgchem.2c01220

    6. [6]

      Wang Y L, Liu Z Y, Li Y X, Bai Z L, Liu W, Wang Y X, Xu X M, Xiao C L, Sheng D P, Diwu J, Su J, Chai Z F, Albrecht-Schmitt T E, Wang S A. Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions[J]. J. Am. Chem. Soc., 2015,137:6144-6147. doi: 10.1021/jacs.5b02480

    7. [7]

      Xie J, Wang Y X, Liu W, Yin X M, Chen L H, Zou Y M, Diwu J, Chai Z F, Albrecht-Schmitt T E, Liu G K, Wang S A. Highly sensitive detection of ionizing radiations by a photoluminescent uranyl organic framework[J]. Angew. Chem. Int. Ed., 2017,56:7500-7504. doi: 10.1002/anie.201700919

    8. [8]

      Hu K Q, Jiang X, Wang C Z, Mei L, Xie Z N, Tao W Q, Zhang X L, Chai Z F, Shi W Q. Solvent-dependent synthesis of porous anionic uranyl-organic frameworks featuring a highly symmetrical (3, 4)-connected ctn or bor topology for selective dye adsorption[J]. Chem.-Eur. J., 2017,23:529-532. doi: 10.1002/chem.201604225

    9. [9]

      Xu M M, Lu H J, Wang C H, Qiu J, Zheng Z F, Guo X F, Zhang Z H, He M Y, Qian J F, Lin J. Enhancing photosensitivity via the assembly of a uranyl coordination polymer[J]. Chem. Commun., 2022,58:9389-9392. doi: 10.1039/D2CC02985E

    10. [10]

      Li Y X, Yang Z X, Wang Y L, Bai Z L, Zheng T, Dai X, Liu S T, Gui D X, Liu W, Chen M, Chen L H, Diwu J, Zhu L Y, Zhou R H, Chai Z F, Albrecht-Schmitt T E, Wang S A. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants[J]. Nat. Commun., 2017,8:1354-1364. doi: 10.1038/s41467-017-01208-w

    11. [11]

      Liu D D, Wang Y L, Luo F, Liu Q Y. Rare three-dimensional uranyl-biphenyl-3, 3'-disulfonyl-4, 4'-dicarboxylate frameworks: Crystal structures, proton conductivity, and luminescence[J]. Inorg. Chem., 2020,59:2952-2960. doi: 10.1021/acs.inorgchem.9b03323

    12. [12]

      Gui D X, Duan W C, Shu J, Zhai F W, Wang N, Wang X X, Xie J, Li H, Chen LH, Diwu J, Chai Z F, Wang S A. Persistent superprotonic conductivity in the order of 10-1 S·cm-1 achieved through thermally induced structural transformation of a uranyl coordination polymer[J]. CCS Chem., 2019,1:197-206. doi: 10.31635/ccschem.019.20190004

    13. [13]

      Yang W T, Parker G, Sun Z M. Structural chemistry of uranium phosphonates[J]. Coord. Chem. Rev., 2015,303:86-109. doi: 10.1016/j.ccr.2015.05.010

    14. [14]

      Liu C, Yang W T, Qu N, Li L J, Pan Q J, Sun Z M. Construction of uranyl organic hybrids by phosphonate and in situ generated carboxyphosphonate ligands[J]. Inorg. Chem., 2017,56:1669-1678. doi: 10.1021/acs.inorgchem.6b02765

    15. [15]

      Adelani P O, Martinez N A, Cook N D, Burns P C. Uranyl-organic hybrids designed from hydroxyphosphonate[J]. Eur. J. Inorg. Chem., 2015:340-347.

    16. [16]

      Adelani P O, Soriano J S, Galeas B E, Sigmon G E, Szymanowski J E S, Burns P C. Hybrid uranyl-phosphonate coordination nanocage[J]. Inorg. Chem., 2019,58(19):12662-12668. doi: 10.1021/acs.inorgchem.9b01448

    17. [17]

      Tang S F, Hou X M. Structural tuning and sensitization of uranyl phosphonates by incorporation of countercations into the framework[J]. Inorg. Chem., 2019,58:1382-1390. doi: 10.1021/acs.inorgchem.8b02904

    18. [18]

      Wen G H, Zou Q, Huang X D, Zhang K, Bao S S, Zheng L M. Heterometallic uranyl-organic frameworks incorporating manganese and copper: Structures, ammonia sorption and magnetic properties[J]. Polyhedron, 2021,205115327. doi: 10.1016/j.poly.2021.115327

    19. [19]

      Wen G H, Zou Q, Xu K, Huang X D, Bao S S, Chen X T, Ouyang Z, Wang Z, Zheng L M. Layered uranyl phosphonates encapsulating Co(Ⅱ)/Mn(Ⅱ)/Zn(Ⅱ) ions: Exfoliation into nanosheets and its impact on magnetic and luminescent properties[J]. Chem.-Eur. J., 2022,28(42)e202200721.

    20. [20]

      Diwu J, Wang S A, Good J J, DiStefano V H, Albrecht-Schmitt T E. Deviation between the chemistry of Ce(Ⅳ) and Pu(Ⅳ) and routes to ordered and disordered heterobimetallic 4f/5f and 5f/5f phosphonates[J]. Inorg. Chem., 2011,50(11):4842-4850. doi: 10.1021/ic200006m

    21. [21]

      Thuéry P, Atoini Y, Harrowfield J. Zero-, mono- and diperiodic uranyl ion complexes with the diphenate dianion: Influences of transition metal ion coordination and differential U chelation[J]. Dalton Trans., 2020,49:817-828. doi: 10.1039/C9DT04126E

    22. [22]

      Kumar S, Maji S, Sundararajan K. Enhanced luminescence of tris (carboxylato)uranyl (Ⅵ) complexes and energy transfer to Eu(Ⅲ): A combined spectroscopic and theoretical investigation[J]. Dalton Trans., 2022,51:9803-9817. doi: 10.1039/D2DT00849A

    23. [23]

      Hou J J, Zhang X M. Structures and magnetic properties of a series of metal phosphonoacetates synthesized from in situ hydrolysis of triethyl phosphonoacetate[J]. Cryst. Growth Des., 2006,6(6):1445-1452. doi: 10.1021/cg0600750

    24. [24]

      Hix G B, Turner A, Kariuki B M, Tremayne M, MacLean E J. Strategies for the synthesis of porous metal phosphonate materials[J]. J. Mater. Chem., 2002,12(11):3220-3227. doi: 10.1039/B204131F

    25. [25]

      Hou X M, Tang S F. Lanthanide-uranyl phosphonates constructed from diethyl ((phenylsulfonyl)methyl)phosphonate[J]. Dalton Trans., 2022,51:1041-1047. doi: 10.1039/D1DT03596G

    26. [26]

      QU Z R. Uranium(Ⅵ) metal-organic framework with atropisomeric dicarboxylic ligand[J]. Chinese J. Inorg. Chem., 2007,23(12):2126-2127. doi: 10.3321/j.issn:1001-4861.2007.12.024

    27. [27]

      JIANG W J, LI A D, TANG M H, NAN X L, TAN Y L, TAN Y X. Solvothermal self-assembly syntheses, crystal structures and property of two uranyl complexes with organic ligand containing N and O atoms[J]. Chinese J. Inorg. Chem., 2021,37(12):2209-2218.  

    28. [28]

      WANG J, LÜ X, LI Z Y, ZHANG Y Y, CHENG S Y. Synthesis, crystal structure of uranium-potassium heteronuclear coordination polymer[J]. Chinese J. Inorg. Chem., 2011,27(3):580-584.  

    29. [29]

      Zheng T, Gao Y, Chen L H, Liu Z Y, Diwu J, Chai Z F, Albrecht-Schmitt T E, Wang S A. A new chiral uranyl phosphonate framework consisting of achiral building units generated from ionothermal reaction: Structure and spectroscopy characterizations[J]. Dalton Trans., 2015,44:18158-18166. doi: 10.1039/C5DT02667A

    30. [30]

      Su J, Zhang K, Schwarz W H E, Li J. Uranyl-glycine-water complexes in solution: Comprehensive computational modeling of coordination geometries, stabilization energies, and luminescence properties[J]. Inorg. Chem., 2011,50:2082-2093. doi: 10.1021/ic200204p

    31. [31]

      Zheng T, Wu Q Y, Gao Y, Gui D X, Qiu S W, Chen L H, Sheng D P, Diwu J, Shi W Q, Chai Z F, Albrecht-Schmitt T E, Wang S A. Probing the influence of phosphonate bonding modes to uranium(Ⅵ) on structural topology and stability: A complementary experimental and computational investigation[J]. Inorg. Chem., 2015,54:3864-3874. doi: 10.1021/acs.inorgchem.5b00024

    32. [32]

      Denning R G. Electronic structure and bonding in actinyl ions and their analogs[J]. J. Phys. Chem. A, 2007,111:4125-4143. doi: 10.1021/jp071061n

    33. [33]

      Thuéry P, Harrowfield J. Uranyl ion complexes with 1,1'-biphenyl-2,2',6,6'-tetracarboxylic acid: Structural and spectroscopic studies of one- to three-dimensional assemblies[J]. Inorg. Chem., 2015,54:6296-6305. doi: 10.1021/acs.inorgchem.5b00596

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    5. [5]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    6. [6]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    7. [7]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    8. [8]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    9. [9]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    10. [10]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    11. [11]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    12. [12]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    13. [13]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    14. [14]

      Zhichao ZhouFuqian ChenXiaotong XiaDong YeRong ZhouLei LiTao DengZhenhua DingFang Liu . Developing a fluorescence substrate for HRP-based diagnostic assays with superiorities over the commercial ADHP. Chinese Chemical Letters, 2024, 35(6): 108970-. doi: 10.1016/j.cclet.2023.108970

    15. [15]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    16. [16]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    17. [17]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    18. [18]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    19. [19]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    20. [20]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

Metrics
  • PDF Downloads(3)
  • Abstract views(594)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return