Citation: Xue-Mei WANG, Jun-Die ZHANG, Jing JIN, Zhuo-Qin LI, Ming-Hui MA, Hui-Yun WANG, Xiu-Juan JIANG, Xiao-Ming LIU. Visible light-induced CO-release from manganese carbonyl complexes based on Schiff base ligand[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 680-688. doi: 10.11862/CJIC.2023.033 shu

Visible light-induced CO-release from manganese carbonyl complexes based on Schiff base ligand

Figures(9)

  • Three manganese carbonyl complexes[Mn (CO)3(py (CH=N) ph X) Br], where X=Cl (1), Br (2), I (3), containing Schiff base ligands were synthesized by a one-step method using manganese pentacarbonyl bromide, 2pyridine formaldehyde, and halogenated aniline.They were characterized by NMR, X-ray single crystal diffraction, IR spectrum, UV-Vis spectrum, and fluorescence spectrum.These complexes were stable under non-illumination, but they could decompose to release CO under visible light (LED blue, green, and red light), which can be used as photo-induced carbon monoxide release molecules (photoCORMs).The CO release rate could be conveniently controlled by selecting different lights.It has been shown that blue light was the most effective light source to promote the decomposition of these complexes to release CO.The differences in the electronic effects of the halogenated ligands in these complexes also contribute to the differences in their reaction rates.In addition, the kinetic analysis of CO release shows that the process conforms to the first-order kinetic model.The carbon monoxide release of complex 3 was also studied by standard myoglobin assay, showing that deoxymyoglobin was able to capture the released CO.Although the cytotoxicity of these complexes itself reached the micromolar level, the cell compatibility under light was significantly improved, rising to nearly 100 micromolar levels.These complexes had fluorescent properties, emitting a certain intensity of fluorescence in a range of 500-700 nm at the excitation wavelength of 450 nm, which can be used as fluorescent markers to monitor the distribution of release agents and CO release in cells or organisms.
  • 加载中
    1. [1]

      Marks G S, Brien J F, Nakatsu K, McLaughlin B E. Does carbon monoxide have a physiological function? Trends Pharmacol[J]. Sci., 1991,12:185-188.

    2. [2]

      Motterlini R, Clark J E, Foresti R, Sarathchandra P, Mann B E, Green C J. Carbon monoxide - releasing molecules - characterization of biochemical and vascular activities[J]. Circ. Res., 2002,90(2):E17-E24.

    3. [3]

      Motterlini R, Otterbein L E. The therapeutic potential of carbon monoxide[J]. Nat. Rev. Drug Discov., 2010,9(9):728-743. doi: 10.1038/nrd3228

    4. [4]

      Johnson T R, Mann B E, Clark J E, Foresti R, Green C J, Motterlini R. Metal carbonyls: A new class of pharmaceuticals[J]. Angew. Chem. Int. Ed., 2003,42(32):3722-3729. doi: 10.1002/anie.200301634

    5. [5]

      Mann B E. Carbon monoxide: An essential signaling molecule[J]. Top. Organomet. Chem., 2010,32:247-285.

    6. [6]

      Romao C C, Blaettler W A, Seixas J D, Bernardes G J L. Developing drug molecules for therapy with carbon monoxide[J]. Chem. Soc. Rev., 2012,41(9):3571-3583. doi: 10.1039/c2cs15317c

    7. [7]

      Adach W, Błaszczyk M, Olas B. Carbon monoxide and its donors chemical and biological properties[J]. Chem. Biol. Interact., 2020,318108973. doi: 10.1016/j.cbi.2020.108973

    8. [8]

      Jiang X J, Xiao Z Y, Zhong W, Liu X M. Brief survey of diiron and monoiron carbonyl complexes and their potentials as CO - releasing molecules (CORMs)[J]. Coord. Chem. Rev., 2021,429213634. doi: 10.1016/j.ccr.2020.213634

    9. [9]

      Lazarus L S, Benninghoff A D, Berreau L M. Development of triggerable, trackable, and targetable carbon monoxide releasing molecules[J]. Acc. Chem. Res., 2020,53(10):2273-2285. doi: 10.1021/acs.accounts.0c00402

    10. [10]

      Ford P C. Metal complex strategies for photo-uncaging the small molecule bioregulators nitric oxide and carbon monoxide[J]. Coord. Chem. Rev., 2018,376:548-564. doi: 10.1016/j.ccr.2018.07.018

    11. [11]

      Wright M A, Wright J A. PhotoCORMs: CO release moves into the visible[J]. Dalton Trans., 2016,45(16):6801-6811. doi: 10.1039/C5DT04849D

    12. [12]

      Jiang X J, Long L, Wang H L, Chen L M, Liu X M. Diiron hexacarbonyl complexes as potential CO-RMs: CO-releasing initiated by a substitution reaction with cysteamine and structural correlation to the bridging linkage[J]. Dalton Trans., 2014,43(26):9968-9975. doi: 10.1039/C3DT53620C

    13. [13]

      Schatzschneider U. Novel lead structures and activation mechanisms for CO-releasing molecules (CORMs)[J]. Brit. J. Pharmacol., 2015,172(6):1638-1650. doi: 10.1111/bph.12688

    14. [14]

      Kunz P C, Meyer H, Barthel J, Sollazzo S, Schmidt A M, Janiak C. Metal carbonyls supported on iron oxide nanoparticles to trigger the CO - gasotransmitter release by magnetic heating[J]. Chem. Commun., 2013,49(43):4896-4898. doi: 10.1039/c3cc41411f

    15. [15]

      Jiang X J, Chen L M, Wang X, Long L, Xiao Z Y, Liu X M. Photoinduced carbon monoxide release from half-sandwich iron(Ⅱ) carbonyl complexes by visible irradiation: Kinetic analysis and mechanistic investigation[J]. Chem. Eur. J., 2015,21(37):13065-13072. doi: 10.1002/chem.201501348

    16. [16]

      Schatzschneider U. PhotoCORMs: Light-triggered release of carbon monoxide from the coordination sphere of transition metal complexes for biological applications[J]. Inorg. Chim. Acta, 2011,374(1):19-23. doi: 10.1016/j.ica.2011.02.068

    17. [17]

      Yang S H, Chen M J, Zhou L L, Zhang G F, Gao Z W, Zhang W Q. Photo-activated CO-releasing molecules (photoCORMs) of robust sawhorse scaffolds[μ2 - OOCR1, η1 - NH2CHR2(C=O)OCH3, Ru(Ⅰ)2CO4][J]. Dalton Trans., 2016,45(9):3727-3733. doi: 10.1039/C5DT04479K

    18. [18]

      Hu M X, Yan Y L, Zhu B H, Chang F, Yu S Y, Alatan G. A series of Mn (Ⅰ) photo - activated carbon monoxide - releasing molecules with benzimidazole coligands: Synthesis, structural characterization, CO releasing properties and biological activity evaluation[J]. RSC Adv., 2019,9(36):20505-20512. doi: 10.1039/C9RA01370A

    19. [19]

      Lee S X, Tan C H, Mah W L, Wong R C S, Manan N S A, Cheow Y L, Sim K S, Tan K W. Group 6 photo- activable carbon monoxidereleasing molecules (photoCORMs) with 1'10-phenanthroline based ligand as potential anti - proliferative and anti - microbial agents[J]. Inorg. Chim. Acta, 2022,537120931. doi: 10.1016/j.ica.2022.120931

    20. [20]

      Catalano A, Sinicropi M S, Iacopetta D, Ceramella J, Mariconda A, Rosano C, Scali E, Saturnino C, Longo P. A review on the advancements in the field of metal complexes with Schiff bases as antiproliferative agents[J]. Appl. Sci.-Basel, 2021,11(3)6027.

    21. [21]

      Tadele K T, Tsega T W. Schiff bases and their metal complexes as potential anticancer candidates: A review of recent works[J]. Anticancer Agents Med. Chem., 2019,19(15):1786-1795. doi: 10.2174/1871520619666190227171716

    22. [22]

      Chen P, Bornhorst J, Aschner M. Manganese metabolism in humans[J]. Front. Biosci., 2018,23:1655-1679. doi: 10.2741/4665

    23. [23]

      Hu M X, Zhu B H, Zhou H F, Qiao L, Fan J M, Du Y Q, Chang F, Yu S Y. Water-soluble UV/visible light activated Mn-CO-releasing molecules: Synthesis, structure, CO releasing and biological activities evaluation[J]. Inorg. Chem. Commun., 2020,119108093. doi: 10.1016/j.inoche.2020.108093

    24. [24]

      Kumar U, Roy S, Jha R K, Vidhyapriya P, Sakthivel N, Manimaran B. Selenolato-bridged manganese (Ⅰ) -based dinuclear metallacycles as potential anticancer agents and photo-CORMs[J]. ACS Omega, 2019,4(1):1923-1930. doi: 10.1021/acsomega.8b03177

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    5. [5]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    8. [8]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    9. [9]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    10. [10]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    13. [13]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    14. [14]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    15. [15]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    16. [16]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    17. [17]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    18. [18]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    19. [19]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    20. [20]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

Metrics
  • PDF Downloads(11)
  • Abstract views(956)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return