Citation: Xue-Mei WANG, Jun-Die ZHANG, Jing JIN, Zhuo-Qin LI, Ming-Hui MA, Hui-Yun WANG, Xiu-Juan JIANG, Xiao-Ming LIU. Visible light-induced CO-release from manganese carbonyl complexes based on Schiff base ligand[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 680-688. doi: 10.11862/CJIC.2023.033 shu

Visible light-induced CO-release from manganese carbonyl complexes based on Schiff base ligand

Figures(9)

  • Three manganese carbonyl complexes[Mn (CO)3(py (CH=N) ph X) Br], where X=Cl (1), Br (2), I (3), containing Schiff base ligands were synthesized by a one-step method using manganese pentacarbonyl bromide, 2pyridine formaldehyde, and halogenated aniline.They were characterized by NMR, X-ray single crystal diffraction, IR spectrum, UV-Vis spectrum, and fluorescence spectrum.These complexes were stable under non-illumination, but they could decompose to release CO under visible light (LED blue, green, and red light), which can be used as photo-induced carbon monoxide release molecules (photoCORMs).The CO release rate could be conveniently controlled by selecting different lights.It has been shown that blue light was the most effective light source to promote the decomposition of these complexes to release CO.The differences in the electronic effects of the halogenated ligands in these complexes also contribute to the differences in their reaction rates.In addition, the kinetic analysis of CO release shows that the process conforms to the first-order kinetic model.The carbon monoxide release of complex 3 was also studied by standard myoglobin assay, showing that deoxymyoglobin was able to capture the released CO.Although the cytotoxicity of these complexes itself reached the micromolar level, the cell compatibility under light was significantly improved, rising to nearly 100 micromolar levels.These complexes had fluorescent properties, emitting a certain intensity of fluorescence in a range of 500-700 nm at the excitation wavelength of 450 nm, which can be used as fluorescent markers to monitor the distribution of release agents and CO release in cells or organisms.
  • 加载中
    1. [1]

      Marks G S, Brien J F, Nakatsu K, McLaughlin B E. Does carbon monoxide have a physiological function? Trends Pharmacol[J]. Sci., 1991,12:185-188.

    2. [2]

      Motterlini R, Clark J E, Foresti R, Sarathchandra P, Mann B E, Green C J. Carbon monoxide - releasing molecules - characterization of biochemical and vascular activities[J]. Circ. Res., 2002,90(2):E17-E24.

    3. [3]

      Motterlini R, Otterbein L E. The therapeutic potential of carbon monoxide[J]. Nat. Rev. Drug Discov., 2010,9(9):728-743. doi: 10.1038/nrd3228

    4. [4]

      Johnson T R, Mann B E, Clark J E, Foresti R, Green C J, Motterlini R. Metal carbonyls: A new class of pharmaceuticals[J]. Angew. Chem. Int. Ed., 2003,42(32):3722-3729. doi: 10.1002/anie.200301634

    5. [5]

      Mann B E. Carbon monoxide: An essential signaling molecule[J]. Top. Organomet. Chem., 2010,32:247-285.

    6. [6]

      Romao C C, Blaettler W A, Seixas J D, Bernardes G J L. Developing drug molecules for therapy with carbon monoxide[J]. Chem. Soc. Rev., 2012,41(9):3571-3583. doi: 10.1039/c2cs15317c

    7. [7]

      Adach W, Błaszczyk M, Olas B. Carbon monoxide and its donors chemical and biological properties[J]. Chem. Biol. Interact., 2020,318108973. doi: 10.1016/j.cbi.2020.108973

    8. [8]

      Jiang X J, Xiao Z Y, Zhong W, Liu X M. Brief survey of diiron and monoiron carbonyl complexes and their potentials as CO - releasing molecules (CORMs)[J]. Coord. Chem. Rev., 2021,429213634. doi: 10.1016/j.ccr.2020.213634

    9. [9]

      Lazarus L S, Benninghoff A D, Berreau L M. Development of triggerable, trackable, and targetable carbon monoxide releasing molecules[J]. Acc. Chem. Res., 2020,53(10):2273-2285. doi: 10.1021/acs.accounts.0c00402

    10. [10]

      Ford P C. Metal complex strategies for photo-uncaging the small molecule bioregulators nitric oxide and carbon monoxide[J]. Coord. Chem. Rev., 2018,376:548-564. doi: 10.1016/j.ccr.2018.07.018

    11. [11]

      Wright M A, Wright J A. PhotoCORMs: CO release moves into the visible[J]. Dalton Trans., 2016,45(16):6801-6811. doi: 10.1039/C5DT04849D

    12. [12]

      Jiang X J, Long L, Wang H L, Chen L M, Liu X M. Diiron hexacarbonyl complexes as potential CO-RMs: CO-releasing initiated by a substitution reaction with cysteamine and structural correlation to the bridging linkage[J]. Dalton Trans., 2014,43(26):9968-9975. doi: 10.1039/C3DT53620C

    13. [13]

      Schatzschneider U. Novel lead structures and activation mechanisms for CO-releasing molecules (CORMs)[J]. Brit. J. Pharmacol., 2015,172(6):1638-1650. doi: 10.1111/bph.12688

    14. [14]

      Kunz P C, Meyer H, Barthel J, Sollazzo S, Schmidt A M, Janiak C. Metal carbonyls supported on iron oxide nanoparticles to trigger the CO - gasotransmitter release by magnetic heating[J]. Chem. Commun., 2013,49(43):4896-4898. doi: 10.1039/c3cc41411f

    15. [15]

      Jiang X J, Chen L M, Wang X, Long L, Xiao Z Y, Liu X M. Photoinduced carbon monoxide release from half-sandwich iron(Ⅱ) carbonyl complexes by visible irradiation: Kinetic analysis and mechanistic investigation[J]. Chem. Eur. J., 2015,21(37):13065-13072. doi: 10.1002/chem.201501348

    16. [16]

      Schatzschneider U. PhotoCORMs: Light-triggered release of carbon monoxide from the coordination sphere of transition metal complexes for biological applications[J]. Inorg. Chim. Acta, 2011,374(1):19-23. doi: 10.1016/j.ica.2011.02.068

    17. [17]

      Yang S H, Chen M J, Zhou L L, Zhang G F, Gao Z W, Zhang W Q. Photo-activated CO-releasing molecules (photoCORMs) of robust sawhorse scaffolds[μ2 - OOCR1, η1 - NH2CHR2(C=O)OCH3, Ru(Ⅰ)2CO4][J]. Dalton Trans., 2016,45(9):3727-3733. doi: 10.1039/C5DT04479K

    18. [18]

      Hu M X, Yan Y L, Zhu B H, Chang F, Yu S Y, Alatan G. A series of Mn (Ⅰ) photo - activated carbon monoxide - releasing molecules with benzimidazole coligands: Synthesis, structural characterization, CO releasing properties and biological activity evaluation[J]. RSC Adv., 2019,9(36):20505-20512. doi: 10.1039/C9RA01370A

    19. [19]

      Lee S X, Tan C H, Mah W L, Wong R C S, Manan N S A, Cheow Y L, Sim K S, Tan K W. Group 6 photo- activable carbon monoxidereleasing molecules (photoCORMs) with 1'10-phenanthroline based ligand as potential anti - proliferative and anti - microbial agents[J]. Inorg. Chim. Acta, 2022,537120931. doi: 10.1016/j.ica.2022.120931

    20. [20]

      Catalano A, Sinicropi M S, Iacopetta D, Ceramella J, Mariconda A, Rosano C, Scali E, Saturnino C, Longo P. A review on the advancements in the field of metal complexes with Schiff bases as antiproliferative agents[J]. Appl. Sci.-Basel, 2021,11(3)6027.

    21. [21]

      Tadele K T, Tsega T W. Schiff bases and their metal complexes as potential anticancer candidates: A review of recent works[J]. Anticancer Agents Med. Chem., 2019,19(15):1786-1795. doi: 10.2174/1871520619666190227171716

    22. [22]

      Chen P, Bornhorst J, Aschner M. Manganese metabolism in humans[J]. Front. Biosci., 2018,23:1655-1679. doi: 10.2741/4665

    23. [23]

      Hu M X, Zhu B H, Zhou H F, Qiao L, Fan J M, Du Y Q, Chang F, Yu S Y. Water-soluble UV/visible light activated Mn-CO-releasing molecules: Synthesis, structure, CO releasing and biological activities evaluation[J]. Inorg. Chem. Commun., 2020,119108093. doi: 10.1016/j.inoche.2020.108093

    24. [24]

      Kumar U, Roy S, Jha R K, Vidhyapriya P, Sakthivel N, Manimaran B. Selenolato-bridged manganese (Ⅰ) -based dinuclear metallacycles as potential anticancer agents and photo-CORMs[J]. ACS Omega, 2019,4(1):1923-1930. doi: 10.1021/acsomega.8b03177

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    12. [12]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(9)
  • Abstract views(836)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return