Citation: Ying CHENG, Yi-Bing LIU, Hui-Yao ZHAO, Xin-Da NAN, Xiao-Qing FAN, Sheng-Ling LI, Li-Feng DING, Qi WANG, Yu-Lan NIU. Construction of MnO2 nanoparticles mediated UV-visible absorption-fluorescence dual channel sensor and detection of D-penicillamine[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 617-626. doi: 10.11862/CJIC.2023.032 shu

Construction of MnO2 nanoparticles mediated UV-visible absorption-fluorescence dual channel sensor and detection of D-penicillamine

Figures(8)

  • In this work, manganese dioxide nanoparticles (MnO2 NPs) were synthesized through a in situ redox reaction using polyethyleneimine (PEI) as both template and reductant. The morphology, composition, UV-visible absorption, and catalytic oxidation performance of MnO2 NPs were characterized. MnO2 NPs possessed the characteristic of catalytic oxidation of o-phenylenediamine (OPD) to 2, 3-diaminophenazine (DAP), producing the UV-visible absorption at 420 nm and fluorescence emission at 560 nm. Owing to its active sulfhydryl, D-penicillamine (DPA) could decompose MnO2 NPs through a unique redox reaction. Therefore, the catalytic oxidation activity was inhibited that made UV-visible absorption-fluorescence signals decreased and even disappeared. Based on the relationship between spectral variation and DPA concentration, a MnO2 NPs mediated UV-visible absorption-fluorescence dual channel sensing method for DPA was established. Fluorescence channel sensing possessed satisfactory linear range and sensitivity. The linear range was 1-80 μmol·L-1 with a detection limit of 0.54 μmol·L-1. Moreover, MnO2 NPs mediated fluorescence sensing was applied in human urine sample detection and the recovery was in a range of 98.31%-107.76%, which proved the reliability of this method.
  • 加载中
    1. [1]

      Gooneratne S R, Christensen D A. Effect of chelating agents on the excretion of copper, zinc and iron in the bile and urine of sheep[J]. Vet. J., 1997,153(2):171-178. doi: 10.1016/S1090-0233(97)80037-8

    2. [2]

      Chen Y F, Qiao J, Liu Q R, Zhang M M, Qi L. Fluorescence turn-on assay for detection of serum D-penicillamine based on papain@AuNCs-Cu2+ complex[J]. Anal. Chim. Acta, 2018,1026:133-139. doi: 10.1016/j.aca.2018.04.014

    3. [3]

      Yuan Y S, Zhao X, Liu S P, Li Y F, Shi Y, Yan J J, Hu X L. A fluorescence switch sensor used for D-penicillamine sensing and logic gate based on the fluorescence recovery of carbon dots[J]. Sens. Actuator B-Chem., 2016,236:565-573. doi: 10.1016/j.snb.2016.06.007

    4. [4]

      Kean W F, Howard-Lock H E, Lock C J L. Chirality in antirheumatic drugs[J]. Lancet, 1991,338:1565-1568. doi: 10.1016/0140-6736(91)92382-C

    5. [5]

      Joly D, Rieu P, Méjean A, Gagnadoux M F, Daudon M, Jungers P. Treatment of cystinuria[J]. Pediatr. Nephrol., 1999,13(9):945-950. doi: 10.1007/s004670050736

    6. [6]

      Rozina T, Fastovets S, Lee O, Kuchieva A, Bulanov N, Moiseev S. D-penicillamine-induced autoimmune disorders[J]. Digest. Liver Dis., 2019,51(12):1741-1742. doi: 10.1016/j.dld.2019.08.025

    7. [7]

      Ge H W, Zhang K, Yu H, Yue J, Yu L, Chen X F, Hou T X, Alamry K A, Marwani H M, Wang S H. Sensitive and selective detection of antibiotic D-penicillamine based on a dual-mode probe of fluorescent carbon dots and gold nanoparticles[J]. J. Fluoresc., 2018,28(6):1405-1412. doi: 10.1007/s10895-018-2307-3

    8. [8]

      Cao L W, Wei T, Shi Y H, Tan X F, Meng J X. Determination of D-penicillamine and tiopronin in human urine and serum by HPLC-FLD and CE-LIF with 1, 3, 5, 7-tetramethyl-8-bromomethyl-difluoroboradiaza-s-indacene[J]. J. Liq. Chromatogr. Relat. Technol., 2018,41(2):58-65. doi: 10.1080/10826076.2017.1348953

    9. [9]

      Saracino M A, Cannistraci C, Bugamelli F, Morganti E, Neri I, Balestri R, Patrizi A, Raggi M A. A novel HPLC electrochemical detection approach for the determination of D-penicillamine in skin specimens[J]. Talanta, 2013,103:355-360. doi: 10.1016/j.talanta.2012.10.076

    10. [10]

      Yang X P, Yuan H Y, Wang C L, Su X D, Hu L, Xiao D. Determination of penicillamine in pharmaceuticals and human plasma by capillary electrophoresis with in-column fiber optics light-emitting diode induced fluorescence detection[J]. J. Pharm. Biomed. Anal., 2007,45(2):362-366. doi: 10.1016/j.jpba.2007.05.017

    11. [11]

      Hadidi M, Ahour F, Keshipour S. Electrochemical determination of trace amounts of lead ions using D-penicillamine-functionalized graphene quantum dot-modified glassy carbon electrode[J]. J. Iran Chem. Soc., 2022,19(4):1179-1189. doi: 10.1007/s13738-021-02367-w

    12. [12]

      Liu Z X, Kuang X, Sun X, Zhang Y, Wei Q. Electrochemical enantioselective recognition penicillamine isomers based on chiral C-dots/MOF hybrid arrays[J]. J. Electroanal. Chem., 2019,846113151. doi: 10.1016/j.jelechem.2019.05.033

    13. [13]

      Alkahtani S A, Mahmoud A M, El-Wekil M M. Electrochemical sensing of copper-chelator D-penicillamine based on complexation with gold nanoparticles modified copper based-metal organic frameworks[J]. J. Electroanal. Chem., 2022,908116102. doi: 10.1016/j.jelechem.2022.116102

    14. [14]

      Shahrajabian M, Ghasemi F, Hormozi-Nezhad M R. Nanoparticle-based chemiluminescence for chiral discrimination of thiol-containing amino acids[J]. Sci. Rep., 2018,814011. doi: 10.1038/s41598-018-32416-z

    15. [15]

      Phadungcharoen N, Patrojanasophon P, Opanasopit P, Ngawhirunpat T, Chinsriwongkul A, Rojanarata T. Smartphone-based Ellman's colourimetric methods for the analysis of D-penicillamine formulation and thiolated polymer[J]. Int. J. Pharm., 2019,558:120-127. doi: 10.1016/j.ijpharm.2018.12.078

    16. [16]

      Nazifi M, Ramezani A M, Absalan G, Ahmadi R. Colorimetric determination of D-penicillamine based on the peroxidase mimetic activity of hierarchical hollow MoS2 nanotubes[J]. Sens. Actuat. B-Chem., 2021,332129459. doi: 10.1016/j.snb.2021.129459

    17. [17]

      Zhang X, Liu Q, Wang Z W, Xu H, Ping F, Huang Q, Song H B, Wang Y W. D-penicillamine modified copper nanoparticles for fluorometric determination of histamine based on aggregation-induced emission[J]. Microchim. Acta, 2020,187(6)329. doi: 10.1007/s00604-020-04271-1

    18. [18]

      Wang Q, Li L F, Wu T X, Kong X P, Ma Q G, Ma C L. A graphene quantum dots-Pb2+ based fluorescent switch for selective and sensitive determination of D-penicillamine[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2020,229117924. doi: 10.1016/j.saa.2019.117924

    19. [19]

      Wu M L, Wang N, Lin Z H, Su X G. Development of carbon dot-thiochrome-based sensing system for ratiometric fluorescence detection of D-penicillamine[J]. Anal. Bioanal. Chem., 2021,413(23):5779-5787. doi: 10.1007/s00216-021-03552-9

    20. [20]

      Wu Y, Lu K R, Pei F B, Yan Y H, Feng S S, Hao Q L, Xia M Z, Lei W. Construction of g-C3N4/Au/NH2-UiO-66 Z-scheme heterojunction for label-free photoelectrochemical recognition of D-penicillamine[J]. Talanta, 2022,248123617. doi: 10.1016/j.talanta.2022.123617

    21. [21]

      Li R R, Huang X Y, Lu G L, Feng C. A fluorescence and UV/Vis absorption dual-signaling probe with aggregation-induced emission characteristics for specific detection of cysteine[J]. RSC Adv., 2018,824346. doi: 10.1039/C8RA03756F

    22. [22]

      Lu S, Li Z X, Fu X Y, Xie Z G, Zheng M. Carbon dots-based fluorescence and UV-Vis absorption dual-modal sensors for Ag+ and L-cysteine detection[J]. Dyes Pigment., 2021,187109126. doi: 10.1016/j.dyepig.2020.109126

    23. [23]

      Tan J Y, Geng W F, Li J D, Wang Z, Zhu S H, Wang X Z. Colorimetric and fluorescence dual-mode biosensors based on peroxidase-like activity of the Co3O4 nanosheets[J]. Front. Chem., 2022,10871013. doi: 10.3389/fchem.2022.871013

    24. [24]

      Ding B B, Zheng P, Ma P A, Lin J. Manganese oxide nanomaterials: Synthesis, properties, and theranostic applications[J]. Adv. Mater., 2020,32(10)1905823. doi: 10.1002/adma.201905823

    25. [25]

      Liu F S, Xiao Y Y, Liu Y T, Han P Y, Qin G H. Mesoporous MnO2 based composite electrode for efficient alkali-metal-ion storage[J]. Chem. Eng. J., 2020,380122487. doi: 10.1016/j.cej.2019.122487

    26. [26]

      Ma Z Y, Xu Y F, Li P P, Cheng D, Zhu X H, Liu M L, Zhang Y Y, Liu Y, Yao S Z. Self-catalyzed surface reaction-induced fluorescence resonance energy transfer on cysteine-stabilized MnO2 quantum dots for selective detection of dopamine[J]. Anal. Chem., 2021,93:3586-3593. doi: 10.1021/acs.analchem.0c05102

    27. [27]

      Ma K X, Liang L S, Zhou X, Tan W G, Hu O, Chen Z G. A redox-induced dual-mode colorimetric and fluorometric method based on N-CDs and MnO2 for determination of isoniazid in tablets and plasma samples[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2021,247119097. doi: 10.1016/j.saa.2020.119097

    28. [28]

      Li W, Li T T, Chen S Q, Deng D L, Ji Y B, Li R J. Nanozyme-mediated cascade reaction system for ratiometric fluorescence detection of sarcosine[J]. Sens. Actuators B, 2022,355131341. doi: 10.1016/j.snb.2021.131341

    29. [29]

      Wang J, Lu Q Y, Weng C Y, Li X Y, Yan X Q, Yang W, Li B Z, Zhou X M. Label-free colorimetric detection of acid phosphatase and screening of its inhibitors based on biomimetic oxidase activity of MnO2 nanosheets[J]. ACS Biomater. Sci. Eng., 2020,6(5):3132-3138. doi: 10.1021/acsbiomaterials.0c00217

    30. [30]

      Sha H F, Yan B. Dye-functionalized metal-organic frameworks with the uniform dispersion of MnO2 nanosheets for visualized fluorescence detection of alanine aminotransferase[J]. Nanoscale, 2021,13(47):20205-20212. doi: 10.1039/D1NR05376K

    31. [31]

      Bai F J, Wang H W, Lin L Y, Zhao L S. A ratiometric fluorescence platform composed of MnO2 nanosheets and nitrogen, chlorine co-doped carbon dots and its logic gate performance for glutathione determination[J]. New J. Chem., 2022,46(4):1972-1983. doi: 10.1039/D1NJ05210A

    32. [32]

      Wang Q, Zhang Z R, Yang T, Han Y J, Cheng Y, Wu J N, Bai J J, Ma C L, Niu Y L, Shuang S M. Multiple fluorescence quenching effects mediated fluorescent sensing of captopril based on amino acids-derivative carbon nanodots[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2022,269120742. doi: 10.1016/j.saa.2021.120742

    33. [33]

      Tan X Q, Wan Y F, Huang Y J, He C, Zhang Z L, He Z Y, Hu L L, Zeng J W, Shu D. Three-dimensional MnO2 porous hollow microspheres for enhanced activity as ozonation catalysts in degradation of bisphenol A[J]. J. Hazard. Mater., 2017,321:162-172. doi: 10.1016/j.jhazmat.2016.09.013

    34. [34]

      Wang Q, Zhang Y, Wang X D, Wu Y H, Dong C, Shuang S M. Dual role of BSA for synthesis of MnO2 nanoparticles and their mediated fluorescent turn-on probe for glutathione determination and cancer cell recognition[J]. Analyst, 2019,144(6):1988-1994. doi: 10.1039/C8AN02501K

    35. [35]

      Wang Q, Wang C Y, Wang X D, Zhang Y, Wu Y H, Dong C, Shuang S M. Construction of CPs@MnO2-AgNPs as a multifunctional nanosensor for glutathione sensing and cancer theranostics[J]. Nanoscale, 2019,11(40):18845-18853. doi: 10.1039/C9NR06443E

    36. [36]

      Liu X, Wang Q, Zhao H H, Zhang L C, Su Y Y, Lv Y. BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics[J]. Analyst, 2012,137(19):4552-4558. doi: 10.1039/c2an35700c

    37. [37]

      An X X, Chen R C, Chen Q Z, Tan Q, Pan S, Liu H, Hu X L. A MnO2 nanosheet-assisted ratiometric fluorescence probe based on carbon quantum dots and o-phenylenediamine for determination of 6-mercaptopurine[J]. Microchim. Acta, 2021,188156. doi: 10.1007/s00604-021-04802-4

    38. [38]

      Cao Y, Liu J J, Ye B X, Li G P. Ratiometric fluorescence sensing of glutathione by using the oxidase-mimicking activity of MnO2 nanosheet[J]. Anal. Chim. Acta, 2021,1145(8):46-51.

    39. [39]

      Shi M L, Cen Y, Xu G H, Wei F D, Xu X M, Cheng X, Chai Y Y, Sohail M, Hu Q. Ratiometric fluorescence monitoring of α-glucosidase activity based on oxidase-like property of MnO2 nanosheet and its application for inhibitor screening[J]. Anal. Chim. Acta, 2019,1077:225-231. doi: 10.1016/j.aca.2019.05.037

    40. [40]

      Wang D, Meng Y T, Zhang Y, Wang Q, Lu W J, Shuang S M, Dong C. A specific discriminating GSH from Cys/Hcy fluorescence nanosensor: The carbon dots-MnO2 nanocomposites[J]. Sens. Actuators B, 2022,367132135. doi: 10.1016/j.snb.2022.132135

    41. [41]

      Yang G B, Xu L G, Chao Y, Xu J, Sun X Q, Wu Y F, Peng R, Liu Z. Hollow MnO2 as a tumor-microenvironment responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses[J]. Nature, 2017,8902.

    42. [42]

      Na H B, Lee J H, An K J, Park Y I, Park M Y, Lee I S, Nam D H, Kim S O, Hyeon T H. Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles[J]. Angew. Chem. Int. Ed., 2007,46:5397-5401. doi: 10.1002/anie.200604775

    43. [43]

      Zhao Z L, Fan H H, Zhou G F, Bai H R, Liang H, Wang R W, Zhang X B, Tan W H. Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe[J]. J. Am. Chem. Soc., 2014,136:11220-11223. doi: 10.1021/ja5029364

    44. [44]

      Liu J T, Du P, Liu T R, Wong B J C, Wang W P, Hu H X, Lei J P. A black phosphorus/manganese dioxide nanoplatform: Oxygen self-supply monitoring, photodynamic therapy enhancement and feedback[J]. Biomaterials, 2019,192:179-188. doi: 10.1016/j.biomaterials.2018.10.018

    45. [45]

      Wang Q, Li L F, Wang X D, Dong C, Shuang S M. Graphene quantum dots wrapped square-plate-like MnO2 nanocomposite as a fluorescent turn-on sensor for glutathione[J]. Talanta, 2020,219121180. doi: 10.1016/j.talanta.2020.121180

    46. [46]

      Stojanović Z S, Đurović A D, Ashrafi A M, Koudelková Z, Zítka O, Richtera L. Highly sensitive simultaneous electrochemical determination of reduced and oxidized glutathione in urine samples using antimony trioxide modified carbon paste electrode[J]. Sens. Actuators B, 2020,318128141. doi: 10.1016/j.snb.2020.128141

    47. [47]

      Gong Y, Fan Z F. Label-free room-temperature phosphorescence turn-on detection of tiopronin based on Cu2+-modulated homocysteine-capped manganese doped zinc sulfide quantum dots[J]. J. Lumin., 2015,160:299-304. doi: 10.1016/j.jlumin.2014.12.043

  • 加载中
    1. [1]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    2. [2]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    6. [6]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    7. [7]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    8. [8]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    16. [16]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    17. [17]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    18. [18]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    19. [19]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    20. [20]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

Metrics
  • PDF Downloads(6)
  • Abstract views(1586)
  • HTML views(455)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return