Citation: Tie-Ping CAO, Yue-Jun LI, Da-Wei SUN. Fabrication of Bi2Ti2O7/TiO2/Bi4Ti3O12 multi-heterojunction and the enhanced visible photocatalytic performance[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 699-708. doi: 10.11862/CJIC.2023.030 shu

Fabrication of Bi2Ti2O7/TiO2/Bi4Ti3O12 multi-heterojunction and the enhanced visible photocatalytic performance

  • Corresponding author: Yue-Jun LI, bc640628@163.com
  • Received Date: 21 October 2022
    Revised Date: 17 February 2023

Figures(10)

  • In this work, we prepared double heterojunction Bi2Ti2O7/TiO2/Bi4Ti3O12 composite nanofibers by employing electrospun TiO2 nanofibers as the substrate, bismuth nitrate as the bismuth source, and potassium hydroxide as the mineralizing agent.Through a series of tests such as X-ray diffraction (XRD), scanning electron microscope (SEM), UV-visible diffuse reflectance spectrum (UV-Vis DRS), the phase composition, micromorphology, and optical properties of the Bi2Ti2O7/TiO2/Bi4Ti3O12 catalyst were analyzed.The results showed that the TiO2 changed type Ⅰ heterojunction into multi-heterojunction integrating two type Ⅱ heterojunctions.Photocatalytic tests demonstrated the activity of as-constructed multi-heterojunction was higher than that of single type Ⅰ or Ⅱ heterojunctions, respectively, where photogenerated electrons were accumulated on the surface of TiO2 and photogenerated holes were accumulated on Bi2Ti2O7 and Bi4Ti3O12, respectively.The synergistic effect of Bi2Ti2O7, Bi4Ti3O12, and TiO2 effectively improves the visible light absorption capacity, changes the transmission path of photo-generated carriers, and reduces the recombination probability of photogenerated electron-hole pairs, thereby obtaining the efficient photocatalytic degradation of CH3CHO.The acetaldehyde degradation rate of Bi2Ti2O7/TiO2/Bi4Ti3O12 reached 87.1% under visible light illumination for 8 h.
  • 加载中
    1. [1]

      Wang H J, Li X, Zhao X X, Li C Y, Song X H, Zhang P, Huo P W, Li X. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies[J]. Chin. J. Catal., 2022,43(2):178-214. doi: 10.1016/S1872-2067(21)63910-4

    2. [2]

      Qu Z J, Jing Z Y, Chen X M, Wang Z X, Ren H F, Huang L H. Preparation and photocatalytic performance study of dual Z scheme Bi2Zr2O7/g-C3N4/Ag3PO4 for removal of antibiotics by visible-light[J]. J. Environ. Sci., 2023,125:349-360. doi: 10.1016/j.jes.2022.01.010

    3. [3]

      Yu C L, Chen F C, Zeng D B, Xie Y, Zhou W Q, Liu Z, Wei L F, Yang K, Li D H. A facile phase transformation strategy for fabrication of novel Z-scheme ternary heterojunctions with efficient photocatalytic properties[J]. Nanoscale, 2019,11(16):7720-7733. doi: 10.1039/C9NR00709A

    4. [4]

      Wang K X, Zhang Y S, Liu L N, Lu N, Zhang Z Y. BiOBr nanosheetsdecorated TiO2 nanofibers as hierarchical p-n heterojunctions photocatalysts for pollutant degradation[J]. J. Mater. Sci., 2019,54(11)84268435.

    5. [5]

      Zhang Z Y, Xue X L, Chen X Y. A novel g-C3N4 nanosheet/Ag3PO4/α Bi2O3 ternary dual Z scheme heterojunction with increased light absorption and expanded specific surface area for efficient photocatalytic removal of TC[J]. Dalton Trans., 2022,51(20):8015-8027. doi: 10.1039/D2DT00737A

    6. [6]

      Li X, Yu J G, Jaroniec M, Chen X B. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chem. Rev., 2019,119(6):3962-4179. doi: 10.1021/acs.chemrev.8b00400

    7. [7]

      ZHANG Z, ZOU C T, YANG Z Y, YANG S J. One-step preparation and photocatalytic activity of Bi2MoO6/CoMoO4 embroidery ball structure[J]. Chinese J. Inorg. Chem., 2020,36(8):1446-1456.  

    8. [8]

      Li X B, Xiong J, Xu Y, Feng Z J, Huang J T. Defect-assisted surface modification enhances the visible light photocatalytic performance of g-C3N4@C TiO2 direct Z scheme heterojunctions[J]. Chin. J. Catal., 2019,40:424-433. doi: 10.1016/S1872-2067(18)63183-3

    9. [9]

      Wu Z, Li X Q, Yu C L, Fang L, Zhou W Q, Wei L F. Construct interesting CuS/TiO2 architectures for effective removal of Cr (Ⅵ) in simulated astewater via the strong synergistic adsorption and photocatalytic process[J]. Sci. Total Environ., 2021,796148941. doi: 10.1016/j.scitotenv.2021.148941

    10. [10]

      HU Y Y, LÜ R, ZHANG W L, LIU J X, LI R, FAN C M. One-pot electrochemical preparation and performance of BiOCl0.5Br0.5/BiPO4 double-layer heterojunction thin film photocatalyst[J]. Chinese J. Inorg. Chem., 2022,38(8):1487-1498.  

    11. [11]

      Yuan X X, Yang J Y, Yao Y Y, Shen H, Meng Y, Xie B, Ni Z M, Xia S J. Preparation, characterization and mechanism of 0D/2D Cu2O/BiOCl Z-scheme heterojunction for efficient photocatalytic degradation of tetracycline[J]. Sep. Purif. Technol., 2022,291120965. doi: 10.1016/j.seppur.2022.120965

    12. [12]

      Chen F Y, Yu C L, Wei L F, Fan Q Z, Ma F, Zeng J L, Yi J H, Yang K, Ji H B. Fabrication and characterization of ZnTiO3/Zn2Ti3O8/ZnO ternary photocatalyst for synergetic removal of aqueous organic pollutants and Cr (Ⅵ) ions[J]. Sci. Total Environ., 2020,706136026. doi: 10.1016/j.scitotenv.2019.136026

    13. [13]

      Hou H L, Wang L, Gao F M, Wei G D, Tang B, Yang W Y, Wu T. General strategy for fabricating thoroughly mesoporous nanofibers[J]. J. Am. Chem. Soc., 2014,136(48):16716-16719. doi: 10.1021/ja508840c

    14. [14]

      Liu J, Li D M, Liu X F, Zhou J, Zhao H, Wang N, Cui Z M, Bai J, Zhao Y. TiO2/g C3N4 heterojunction hollow porous nanofibers as superior visible-light photocatalysts for H2 evolution and dye degradation[J]. New J. Chem., 2021,45:22123-22132. doi: 10.1039/D1NJ04390K

    15. [15]

      Cao L T, Song J, Si Y, Yu J Y, Ding B. Thorn-like flexible Ag2C2O4/TiO2 nanofibers as hierarchical heterojunction photocatalysts for efficient visible-light-driven bacteria-killing[J]. J. Colloid Interface Sci., 2021,560:681-689.

    16. [16]

      Tao R, Li X H, Li X W, Shao C L, Liu Y C. TiO2/SrTiO3/g C3N4 ternary heterojunction nanofibers: Gradient energy band, cascade charge transfer, enhanced photocatalytic hydrogen evolution, and nitrogen fixation[J]. Nanoscale, 2020,15:8320-8329.

    17. [17]

      Hou H L, Wang L, Gao F M, Yang X F, Yang W Y. BiVO4@TiO2 core shell hybrid mesoporous nanofibers towards efficient visible light-driven photocatalytic hydrogen production[J]. J. Mater. Chem. C, 2019,7:7858-7864. doi: 10.1039/C9TC02480H

    18. [18]

      Niu S Y, Zhang R Y, Zhang X C, Xiang J M, Guo C F. Morphologydependent photocatalytic performance of Bi4Ti3O12[J]. Ceram. Int., 2020,46(5):6782-6786. doi: 10.1016/j.ceramint.2019.11.169

    19. [19]

      Wang Y, Zheng Z S, Li Y L, Cao L G, Jia P G, Ye Z B. Bi4Ti3O12/CdS nanocomposites enhance the photocatalytic degradation performance[J]. Nano, 2022,17(1)2250008. doi: 10.1142/S1793292022500084

    20. [20]

      Niu S Y, Zhang R Y, Zhang Z Y, Zheng J M, Jiao Y, Guo C F. In situ construction of the BiOCl/Bi2Ti2O7 heterojunction with enhanced visible-light photocatalytic activity[J]. Inorg. Chem. Front., 2019,6791798.

    21. [21]

      Liu Y B, Zhu G Q, Gao J Z, Hojamberdiev M, Lu H G, Zhu R L, Wei X M, Liu P. A novel CeO2/Bi4Ti3O12 composite heterojunction structure with an enhanced photocatalytic activity for bisphenol A[J]. J. Alloy. Compd., 2016,688:487-496. doi: 10.1016/j.jallcom.2016.07.054

    22. [22]

      Li Y J, Cao T P, Mei Z M, Li X P, Sun D W. Development of double heterojunction of Pr2Sn2O7@Bi2Sn2O7/TiO2 for hydrogen production[J]. J. Phys. Chem. Solids, 2020,142109457. doi: 10.1016/j.jpcs.2020.109457

    23. [23]

      Shi H F, Tan H Q, Zhu W B, Sun Z C, Ma Y J, Wang E B. Electrospun Cr-doped Bi4Ti3O12/Bi2Ti2O7 heterostructure fibers with enhanced visible light photocatalytic properties[J]. J. Mater. Chem. A, 2015,3:6586-6591. doi: 10.1039/C4TA06736C

    24. [24]

      Gu H S, Hu Z G, Hu Y M, Yuan Y, You J, Zou W D. The structure and photoluminescence of Bi4Ti3O12 nanoplates synthesized by hydrothermal method[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2008,315:294-298. doi: 10.1016/j.colsurfa.2007.08.010

    25. [25]

      Juang Y D, Kuo H T. Hydrothermal synthesis of sodium potassium bismuth titanates[J]. Ferroelectrics, 2015,478(1):73-80. doi: 10.1080/00150193.2015.1011458

    26. [26]

      Yan J Q, Wu G J, Guan N J, Li L D, Li Z X, Cao X Z. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile[J]. Phys. Chem. Chem. Phys., 2013,15(26):10978-10988. doi: 10.1039/c3cp50927c

    27. [27]

      He Q, Ni Y H, Ye S Y. Heterostructrued Bi2O3/Bi2MoO6 nanocomposites: Simple construction and enhanced visible-light photocatalytic performance[J]. RSC Adv., 2017,7:27089-27099. doi: 10.1039/C7RA02760E

    28. [28]

      Zhang Z, Zou C T, Yang S J, Yang Z Y, Yang Y. Ferroelectric polarization effect promoting the bulk charge separation for enhance the efficiency of photocatalytic degradation[J]. Chem. Eng. J., 2021,410128430. doi: 10.1016/j.cej.2021.128430

    29. [29]

      ZOU C T, ZHANG Z, LIAO W J, YANG S J. Enhancement of photocatalytic performance of layered Bi2MoO6 by ferroelectric polarization[J]. Chinese J. Inorg. Chem., 2020,36(9):1717-1727.  

    30. [30]

      Šutka A, Dobelin N, Joost U, Smits K, Kisand V, Maiorov M, Kooser K, Kook M, Duarte R F, Käämbre T. Facile synthesis of magnetically separable CoFe2O4/Ag2O/Ag2CO3 nanoheterostructures with high photocatalytic performance under visible light and enhanced stability against photodegradation[J]. J. Environ. Chem. Eng., 2017,5(4)34553462.

    31. [31]

      Zhang G X, Zhang H M, Wang R F, Liu H X, He Q C, Zhang X J, Li Y J. Preparation of Ga2O3/ZnO/WO3 double S-scheme heterojunction composite nanofibers by electrospinning method for enhancing photocatalytic activity[J]. J. Mater. Sci.-Mater. Electron., 2021,32(6)73077318.

  • 加载中
    1. [1]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    4. [4]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    9. [9]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    10. [10]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    14. [14]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    15. [15]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

Metrics
  • PDF Downloads(7)
  • Abstract views(1126)
  • HTML views(237)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return