Citation: Yang-Fan SU, Lin-Zhen WU, Yi-Lin LI, Rui LI, Pan HE, Ling ZHANG, You-Kui ZHANG, Jie-Hong LEI, Tao DUAN. Construction of type-Ⅱ TiO2/g-C3N4 heterojunction promoting efficient photocatalytic reduction of U(Ⅵ)[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 689-698. doi: 10.11862/CJIC.2023.029 shu

Construction of type-Ⅱ TiO2/g-C3N4 heterojunction promoting efficient photocatalytic reduction of U(Ⅵ)

Figures(10)

  • TiO2/g-C3N4(T-CN) composite catalyst was successfully prepared by hydrothermal reaction of hollow tubular g-C3N4 and TiO2 nanosheets.Its morphology, structure, and photophysical properties were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectrum (UV-Vis DRS), and photocurrent response.The effect of different amounts of TiO2 on the photoreduction and fixation of U(Ⅵ) by T-CN was studied.The results showed that when the mass ratio of TiO2 to g-C3N4 was 20%, the removal rate of U(Ⅵ) by T-CN-20 was 85.64% in 60 min, which was 4.0 times of that of pure phase g-C3N4.The removal rate of U(Ⅵ) was still more than 69.8% under the coexistence of 10 times of high concentration cations, and had excellent structural stability.According to the analysis of photocatalytic products, T-CN-20 reduced U(Ⅵ) to insoluble U (Ⅳ)(63.68%) for removal, which can effectively solve the problem of U(Ⅵ) pollution in uranium-containing nuclear wastewater.Based on the analysis of energy band theory, the type-Ⅱ photocatalysis mechanism of composite catalyst heterojunction was proposed.
  • 加载中
    1. [1]

      Jiang X H, Xing Q J, Luo X B, Li F, Zou J P, Liu S S, Li X, Wang X K. Simultaneous photoreduction of uranium (Ⅵ) and photooxidation of arsenic(Ⅲ) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation[J]. Appl. Catal. B-Environ., 2018,228:29-38. doi: 10.1016/j.apcatb.2018.01.062

    2. [2]

      Geckeis H, Lutzenkirchen J, Polly R, Rabung T, Schmidt M. Mineralwater interface reactions of actinides[J]. Chem. Rev., 2013,113(2)10161062.

    3. [3]

      Cheng G, Zhang A R, Zhao Z W, Chai Z M, Hu B W, Han B, Ai Y Y, Wang X K. Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity[J]. Sci. Bull., 2021,66(19):1994-2001. doi: 10.1016/j.scib.2021.05.012

    4. [4]

      Tresintsi S, Simeonidis K, Estrade S, Martinez-Boubeta C, Vourlias G, Pinakidou F, Katsikini M, Paloura E C, Stavropoulos G, Mitrakas M. Tetravalent manganese feroxyhyte: A novel nanoadsorbent equally selective for As (Ⅲ) and As (Ⅴ) removal from drinking water[J]. Environ. Sci. Technol., 2013,47(17):9699-9705. doi: 10.1021/es4009932

    5. [5]

      Zhang H L, Liu W, Li A, Zhang D, Li X Y, Zhai F W, Chen L H, Chen L, Wang Y L, Wang S. Three mechanisms in one material: Uranium capture by a polyoxometalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction[J]. Angew. Chem. Int. Ed., 2019,58(45):16110-16114. doi: 10.1002/anie.201909718

    6. [6]

      Abney C W, Mayes R T, Saito T, Dai S. Materials for the recovery of uranium from seawater[J]. Chem. Rev., 2017,117(23):13935-14013. doi: 10.1021/acs.chemrev.7b00355

    7. [7]

      Li H, Zhai F W, Gui D X, Wang X X, Wu C F, Zhang D, Dai X, Deng H, Su X T, Diwu J, Lin Z, Chai Z F, Wang S A. Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks[J]. Appl. Catal. B-Environ., 2019,254:47-54. doi: 10.1016/j.apcatb.2019.04.087

    8. [8]

      Yu K F, Jiang P Y, Yuan H B, He R, Zhu W K, Wang L B. Cu-based nanocrystals on ZnO for uranium photoreduction: Plasmon-assisted activity and entropy-driven stability[J]. Appl. Catal. B-Environ., 2021,288119978. doi: 10.1016/j.apcatb.2021.119978

    9. [9]

      Wu L Z, Zhang L, Liu R X, Ge H Y, Tao Z W, Meng Q, Zhang Y K, Duan T. 2D/2D g-C3N4/1T-MoS2 nanohybrids as schottky heterojunction photocatalysts for nuclear wastewater pretreatment[J]. ACS ES&T Water, 2021,1(10):2197-2205.

    10. [10]

      Yang S, Hua M X, Shen L, Han X L, Xu M Y, Kuang L J, Hua D B. Phosphonate and carboxylic acid co-functionalized MoS2 sheets for efficient sorption of uranium and europium: Multiple groups for broad-spectrum adsorption[J]. J. Hazard. Mater., 2018,354:191-197. doi: 10.1016/j.jhazmat.2018.05.005

    11. [11]

      Li X, Li Q, Linghu W S, Shen R P, Zhao B S, Dong L J, Alsaedi A, Hayat T, Wang J, Liu J. Sorption properties of U(Ⅵ) and Th?? on twodimensional molybdenum disulfide (MoS2) nanosheets: Effects of Ph, ionic strength, contact time, humic acids and temperature[J]. Environ. Technol. Innov., 2018,11:328-338. doi: 10.1016/j.eti.2018.06.001

    12. [12]

      Liu R X, Wu L Z, Liu H, Zhang Y K, Ma J J, Jiang C R, Duan T. High-efficiency photocatalytic degradation of tannic acid using TiO2 heterojunction catalysts[J]. ACS Omega, 2021,6(43):28538-28547. doi: 10.1021/acsomega.1c02500

    13. [13]

      Chen K, Chen C L, Ren X M, Alsaedi A, Hayat T. Interaction mechanism between different facet TiO2 and U(Ⅵ): Experimental and density-functional theory investigation[J]. Chem. Eng. J., 2019,359:944-954. doi: 10.1016/j.cej.2018.11.092

    14. [14]

      Zangeneh H, Zinatizadeh A A L, Habibi M, Akia M, Isa M H. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review[J]. J. Ind. Eng. Chem., 2015,26:1-36. doi: 10.1016/j.jiec.2014.10.043

    15. [15]

      Meng A Y, Zhang L Y, Cheng B, Yu J G. Dual cocatalysts in TiO2 photocatalysis[J]. Adv. Mater., 2019,31(30)1807660.

    16. [16]

      Wu L Z, Chen Y Z, Li Y, Meng Q, Duan T. Functionally integrated g-C3N4@wood-derived carbon with an orderly interconnected porous structure[J]. Appl. Surf. Sci., 2021,540148440. doi: 10.1016/j.apsusc.2020.148440

    17. [17]

      Tong Z W, Yang D, Sun Y Y, Nan Y H, Jiang Z Y. Tubular g-C3N4 isotype heterojunction: Enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer[J]. Small, 2016,12(30):4093-4101. doi: 10.1002/smll.201601660

    18. [18]

      Du A J, Sanvito S, Li Z, Wang D W, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z H, Amal R, Smith S C. Hybrid graphene and graphitic carbon nitride nanocomposite: Gap Opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response[J]. J. Am. Chem. Soc., 2012,134(9):4393-4397. doi: 10.1021/ja211637p

    19. [19]

      Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem[J]. Rev., 2016,116(12):7159-7329.

    20. [20]

      Gong J J, Xie Z B, Wang B, Li Z Q, Zhu Y A, Xue J M, Le Z G. Fabrication of g-C3N4-based conjugated copolymers for efficient photocatalytic reduction of U(Ⅵ)[J]. J. Environ. Chem. Eng., 2021,9(1)104638. doi: 10.1016/j.jece.2020.104638

    21. [21]

      Lu C H, Chen R Y, Wu X, Fan M F, Liu Y H, Le Z G, Jiang S J, Song S Q. Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance[J]. Appl. Surf. Sci., 2016,360:1016-1022. doi: 10.1016/j.apsusc.2015.11.112

    22. [22]

      Liu G, Niu P, Sun C H, Smith S C, Chen Z G, Lu G Q, Cheng H M. Unique electronic structure induced high photoreactivity of sulfur doped graphitic C3N4[J]. J. Am. Chem. Soc., 2010,132(33):11642-11648. doi: 10.1021/ja103798k

    23. [23]

      Zhu Y Q, Wang T, Xu T, Li Y X, Wang C Y. Size effect of Pt Cocatalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution[J]. Appl. Surf. Sci., 2019,464:36-42. doi: 10.1016/j.apsusc.2018.09.061

    24. [24]

      Shalom M, Inal S, Fettkenhauer C, Neher D, Antonietti M. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers[J]. J. Am. Chem. Soc., 2013,135(19):7118-7121. doi: 10.1021/ja402521s

    25. [25]

      Tan Y W, Wei S P, Liu X Y, Pan B Y, Liu S K, Wu J, Fu M, Jia Y M, He Y Z. Neodymium oxide (Nd2O3) coupled tubular g-C3N4, an efficient dual-function catalyst for photocatalytic hydrogen production and NO removal[J]. Sci. Total. Environ., 2021,773145583. doi: 10.1016/j.scitotenv.2021.145583

    26. [26]

      Masih D, Ma Y Y, Rohani S. Graphitic C3N4 Based noble-metal-free photocatalyst systems: A review[J]. Appl. Catal. B-Environ., 2017,206:556-588. doi: 10.1016/j.apcatb.2017.01.061

    27. [27]

      Liu X L, Ma R, Zhuang L, Hu B W, Chen J R, Liu X Y, Wang X K. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants[J]. Crit. Rev. Environ. Sci. Technol., 2020,51(8):751-790.

    28. [28]

      Wang J, Zhang W D. Modification of TiO2 nanorod arrays by graphitelike g-C3N4 with high visible light photoelectrochemical activity[J]. Electrochim. Acta, 2012,71:10-16. doi: 10.1016/j.electacta.2012.03.102

    29. [29]

      Lei Q, Yang S J, Ding D H, Tan J H, Liu J F, Chen R Z. Local-interaction-field-coupled semiconductor photocatalysis: Recent progress and future challenges[J]. J. Mater. Chem. A, 2021,9(5):2491-2525. doi: 10.1039/D0TA09059J

    30. [30]

      Fang H X, Guo H, Niu C G, Liang C, Huang D W, Tang N, Liu H Y, Yang Y Y, Li L. Hollow tubular graphitic carbon nitride catalyst with adjustable nitrogen vacancy: Enhanced optical absorption and carrier separation for improving photocatalytic activity[J]. Chem. Eng. J., 2020,402126185. doi: 10.1016/j.cej.2020.126185

    31. [31]

      Li Y H, Gu M L, Shi T, Cui W, Zhang X M, Dong F, Cheng J S, Fan J J, Lv K L. Carbon vacancy in C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity[J]. Appl. Catal. B-Environ., 2020,262118281. doi: 10.1016/j.apcatb.2019.118281

    32. [32]

      Han X G, Kuang Q, Jin M S, Xie Z X, Zheng L S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties[J]. J. Am. Chem. Soc., 2009,131(9):3152-3153. doi: 10.1021/ja8092373

    33. [33]

      Gong X, Tang L, Zou J, Guo Z H, Li Y, Lei J, Liu H H, Liu M, Zhou L, Huang P L, Ruan H M, Lu Y X, Zhu W K, He R. Introduction of cation vacancies and iron doping into TiO2 enabling efficient uranium photoreduction[J]. J. Hazard. Mater., 2022,423(Part A)126935.

    34. [34]

      Wang J, Wang G H, Cheng B, Yu J G, Fan J J. Sulfur-Doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo red photodegradation[J]. Chin. J. Catal., 2021,42(1):56-68. doi: 10.1016/S1872-2067(20)63634-8

    35. [35]

      Cai J S, Huang J Y, Wang S C, Iocozzia J, Sun Z T, Sun J Y, Yang Y K, Lai Y K, Lin Z Q. Crafting mussel-inspired metal nanoparticledecorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources[J]. Adv. Mater., 2019,31(15)1806314. doi: 10.1002/adma.201806314

    36. [36]

      PAN L F, YAN X, WANG C L, XIE M, LI Z, AI T, NIU Y H. Hollow tubular g-C3N4/Ag3PO4 preparation of composite catalyst and its visible light catalytic performance[J]. Chinese J. Inorg. Chem., 2022,38(4):695-704.  

    37. [37]

      Liu Y W, Liang L, Xiao C, Hua X M, Li Z, Pan B C, Xie Y. Promoting photogenerated holes utilization in pore-rich WO3 ultrathin nanosheets for efficient oxygen-evolving photoanode[J]. Adv. Energy Mater., 2016,6(23)1600437. doi: 10.1002/aenm.201600437

    38. [38]

      Li P, Wang Y, Wang J J, Dong L, Zhang W T, Lu Z H, Liang J J, Pan D Q, Fan Q H. Carboxyl groups on g-C3N4 for boosting the photocatalytic U(Ⅵ) reduction in the presence of carbonates[J]. Chem. Eng. J., 2021,414128810. doi: 10.1016/j.cej.2021.128810

    39. [39]

      Guo H, Niu C G, Huang D W, Tang N, Liang C, Zhang L, Wen X J, Yang Y, Wang W J, Zeng G M. Integrating the plasmonic effect and p-n heterojunction into a novel Ag/Ag2O/PbBiO2Br photocatalyst: Broadened light absorption and accelerated charge separation co mediated highly efficient visible/NIR light photocatalysis[J]. Chem. Eng. J., 2019,360:349-363. doi: 10.1016/j.cej.2018.11.229

    40. [40]

      Zhang G G, Lan Z A, Lin L H, Lin S, Wang X C. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents[J]. Chem. Sci., 2016,7(5):3062-3066. doi: 10.1039/C5SC04572J

  • 加载中
    1. [1]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    4. [4]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    9. [9]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    10. [10]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    15. [15]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    18. [18]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(12)
  • Abstract views(924)
  • HTML views(204)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return