Citation: Dominic Kurbah Sunshine. Dioxidomolybdenum(Ⅵ) complex derived from malonoyldihydrazones: Synthesis, characterization, and crystal structure[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 709-715. doi: 10.11862/CJIC.2023.028 shu

Dioxidomolybdenum(Ⅵ) complex derived from malonoyldihydrazones: Synthesis, characterization, and crystal structure

  • Corresponding author: Dominic Kurbah Sunshine, sunshinekurbah@yahoo.com
  • Received Date: 28 April 2022
    Revised Date: 16 December 2022

Figures(4)

  • In this paper, we report the synthesis, characterization, and molecular structure of the dioxidomolybdenum (Ⅵ) complex[MoO2(H2L)(H2O)].The complex was obtained by reaction of malanoyldihydrazones ligand bis (2 hydroxy-1-naphthaldehyde) malonoyldihydrazone (H4L) with molybdenum bis (acetylacetonato) dioxomolybdenum (Ⅵ) in a 1∶1 molar ratio in methanol.The complex was characterized by using various spectroscopic studies, such as IR, MS, and NMR.The structure of the complex was established by single-crystal X-ray crystallography.The complex crystallizes in the monoclinic space group P21/c.The metal center has distorted octahedral coordination environments, connected to one azomethine nitrogen atom of H4L, two terminal oxido groups, two oxygen atoms of H4L, and one oxygen atom of a coordinated water molecule.
  • 加载中
    1. [1]

      Kurbah S D, Kumar A, Syiemlieh I, Asthana M, Lal R A. Bimetallic cis-dioxomolybdenum (Ⅵ) complex containing hydrazine ligand: Syntheses, crystal structure and catalytic studies[J]. Inorg. Chem. Commun., 2017,86:39-43. doi: 10.1016/j.inoche.2017.09.018

    2. [2]

      Amini M, Haghdoost M M, Bagherzadeh M. Oxido-peroxido molybdenum (Ⅵ) complexes in catalytic and stoichiometric oxidations[J]. Coord. Chem. Rev., 2013,257:1093-1121. doi: 10.1016/j.ccr.2012.11.018

    3. [3]

      Hille R. The molybdenum oxotransferases and related enzymes[J]. Dalton Trans., 2013,42:3029-3042. doi: 10.1039/c2dt32376a

    4. [4]

      Khatua S, Naskar T, Nandi C, Majumdar A. Mononuclear bis (dithiolene) Mo (Ⅳ) and W (Ⅳ) complexes with P, P; S, S; O, S and O, O donor ligands: A comparative reactivity study[J]. New J. Chem., 2017,4197699783.

    5. [5]

      Kurbah S D, Kumar A, Shangpung S, Syiemlieh I, Khongjoh I, Lal R A. Synthesis, characterization, and fluorescence chemosensor properties of a cis dioxomolybdenum (Ⅵ) complex containing multidentate hydrazone ligands[J]. Z. Anorg. Allg. Chem., 2017,643:794-801. doi: 10.1002/zaac.201700100

    6. [6]

      Majumdar A. Structural and functional models in molybdenum and tungsten bioinorganic chemistry: Description of selected model complexes, present scenario and possible future scopes[J]. Dalton Trans., 2014,43:8990-9003. doi: 10.1039/c4dt00631c

    7. [7]

      Cherak S J, Turner R J. Assembly pathway of a bacterial complex iron sulfur molybdoenzyme[J]. BioMolecular Concepts, 2017,8:155-167. doi: 10.1515/bmc-2017-0011

    8. [8]

      Rakshit S, Palit D, Hazari S K S, Rabi S, Roy T G, Olbrich F, Rehder D. Synthesis, characterization and biomedical activities of molybdenum complexes of tridentate Schiff base ligands. Crystal and molecular structure of[MoO2(L10)(DMSO)] and[MoO2(L11)(DMSO)][J]. Polyhedron, 2016,117:224-230.

    9. [9]

      Sarkheil M, Lashanizadegan M. New magnetic supported hydrazone Schiff base dioxomolybdenum (Ⅵ) complex: An efficient nanocatalyst for epoxidation of cyclooctene and norbornene[J]. Appl. Organomet. Chem., 2018,32e4459. doi: 10.1002/aoc.4459

    10. [10]

      Maia L B, Moura J J G, Moura I. Molybdenum and tungsten-dependent formate dehydrogenases[J]. J. Biol. Inorg. Chem., 2015,20:287-309. doi: 10.1007/s00775-014-1218-2

    11. [11]

      Heinze K. Bioinspired functional analogs of the active site of molybdenum enzymes: Intermediates and mechanisms[J]. Coord. Chem. Rev., 2015,300:121-141. doi: 10.1016/j.ccr.2015.04.010

    12. [12]

      Li F, Talipov M R, Dong C, Bali S, Ding K. Acid-facilitated product release from a Mo (Ⅳ) center: Relevance to oxygen atom transfer reactivity of molybdenum oxotransferases[J]. J. Biol. Inorg. Chem., 2018,23:193-207. doi: 10.1007/s00775-017-1518-4

    13. [13]

      Nishino T, Okamoto K. Mechanistic insights into xanthine oxidoreductase from development studies of candidate drugs to treat hyperuricemia and gout[J]. J. Biol. Inorg. Chem., 2015,20:195-207. doi: 10.1007/s00775-014-1210-x

    14. [14]

      Tamm M, Dre Bel B, Urban V, Lugger T. Coordinatively unsaturated molybdenum complexes with chelating cycloheptatrienyl-phosphane ligands and their use in transition metal catalysis[J]. Inorg. Chem. Commun., 2002,5:837-840. doi: 10.1016/S1387-7003(02)00587-7

    15. [15]

      Ahamed A S, Saadia A A, Orabi A. Spectral and thermal studies of some chromium and molybdenum complexes with ONO donor Schiff bases[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2006,65841845.

    16. [16]

      Salonen P, Peuronen A, Lehtonen A. Bioinspired Mo, W and V complexes bearing a highly hydroxyl-functionalized Schiff base ligand[J]. Inorg. Chim. Acta, 2020,503119414. doi: 10.1016/j.ica.2020.119414

    17. [17]

      Maurya M R, Mengesha B, Maurya S K, Avecilla F. Synthesis, characterization and catalytic activity of dioxidouranium (Ⅵ) complexes of ONNO tetradentate Mannich bases[J]. Inorg. Chim. Acta, 2019,493118126.

    18. [18]

      Bray R C. The inorganic biochemistry of molybdoenzymes[J]. Q. Rev. Biophys., 1988,21:299-329. doi: 10.1017/S0033583500004479

    19. [19]

      Malthouse J P G, Bray R C. Coupling of[33S]sulphur to molybdenum(Ⅵ) in different reduced forms of xanthine oxidase[J]. Biochem. J., 1980,191:629-637.

    20. [20]

      Holm R H. Metal centered oxygen atom transfer reactions[J]. Chem. Rev., 1987,87:1401-1449. doi: 10.1021/cr00082a005

    21. [21]

      Gupta S, Barik A K, Pal S, Hazra A, Roy Butcher R J, Kar S K. Oxomolybdenum (Ⅵ) and (Ⅳ) complexes of pyrazole derived ONO donor ligands-Synthesis, crystal structure studies and spectroelectrochemical correlation[J]. Polyhedron, 2007,26:133-141. doi: 10.1016/j.poly.2006.08.001

    22. [22]

      Vrdoljak V, Pisk J, Prugoveki B, Calogovi D M. Novel dioxomolybdenum (Ⅵ) and oxomolybdenum(Ⅴ) complexes with pyridoxal thiosemicarbazone ligands: Synthesis and structural characterization[J]. Inorg. Chim. Acta, 2009,362:4059-4064. doi: 10.1016/j.ica.2009.05.057

    23. [23]

      Cindri M, Vrdoljak V, Strukan N, Kamenar B. Synthesis and characterization of some monoand dinuclear molybdenum (Ⅵ) thiosemicarbazonato complexes[J]. Polyhedron, 2005,24:369-376. doi: 10.1016/j.poly.2004.12.007

    24. [24]

      Rao S N, Munshi K N, Rao N N, Bhadbhade M M, Suresh E. Synthesis, spectral and X ray structural characterization of[cis MoO2(L)(solv)](L=salicylidene salicyloyl hydrazine) and its use as catalytic oxidant[J]. Polyhedron, 1999,18:2491-2497. doi: 10.1016/S0277-5387(99)00139-4

    25. [25]

      Sheldrick G M. SADABS, Program for empirical absorption correction of area detector data. University of Göttingen, Germany, 1996.

    26. [26]

      Sheldrick G M. SHELXL-14, Program for crystal structure refinements. University of Göttingen, Germany, 1996.

    27. [27]

      Geary W J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds[J]. Coord. Chem. Rev., 1971,7:81-122. doi: 10.1016/S0010-8545(00)80009-0

    28. [28]

      Ahmed A, Lal R A. Synthesis and electrochemical characterization (the original text is characterisation) of molybdenum (Ⅵ) complexes of disalicylaldehyde malonoyl-dihydrazone[J]. J. Mol. Struct., 2013,1048:321-330. doi: 10.1016/j.molstruc.2013.05.056

    29. [29]

      Lal R A, Chanu O B, Borthakur R, Asthana M, Kumar A, De A K. Synthesis and characterization of molybdenum (Ⅴ, Ⅵ) complexes derived from bis (2-hydroxy-1-naphthaldehyde) malonoyldihydrazone[J]. J. Coord. Chem., 2011,64:1393-1410. doi: 10.1080/00958972.2011.560939

    30. [30]

      Zhi F, Shao N, Wang Q, Zhang Y, Wang R, Yang Y. Crystal structures and antibacterial activity of hydrazone derivatives from 1H indol-3-acetohydrazide[J]. J. Struct. Chem., 2013,54:148-154. doi: 10.1134/S0022476613010216

    31. [31]

      Lal R A, Choudhury S, Ahmed A, Borthakur R, Asthana M, Kumar A. Synthesis of homobimetallic molybdenum (Ⅵ) complex of bis (2 hydroxy-1-naphthaldehyde) malonoyldihydrazone and its reaction with electron and proton bases[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2010,75:212-224. doi: 10.1016/j.saa.2009.10.014

    32. [32]

      Percy G C. Infrared spectra of nickel (Ⅱ) and cobalt (Ⅱ) N-salicylideneglycinates[J]. J. Inorg. Nucl. Chem., 1975,37:2071-2073. doi: 10.1016/0022-1902(75)80832-3

    33. [33]

      Kumar A, Koch A, Borthakur R, Chakraborty R, De A K, Phukan A, Bez G, Lal R A. Synthesis and spectroscopic characterization of monometallic molybdenum (Ⅵ) complexes derived from bis (2-hydroxy-1-naphthaldehyde) succinoyldihydrazone[J]. J. Mol. Struct., 2014,1063:92-101. doi: 10.1016/j.molstruc.2014.01.048

    34. [34]

      Lal R A, Chakravorty M, Choudhury S, Ahmed A, Borthakur R, Kumar A. Synthesis and spectral characterization of homobimetallic molybdenum (Ⅵ) complexes derived from bis (2-hydroxy-1-naphthaldehyde) succinoyldihydrazone[J]. J. Coord. Chem., 2009,62:1-13. doi: 10.1080/00958970802472098

    35. [35]

      Gupta S, Kirillova M V, Guedes da Silva C, Pombeiro A J L, Kirillov A M. Alkali metal directed assembly of heterometallic V/M (M=Na, K, Cs) coordination polymers: Structures, topological analysis, and oxidation catalytic properties[J]. Inorg. Chem., 2013,52:8601-8611. doi: 10.1021/ic400743h

    36. [36]

      Hosslini Monfared H, Asghari Lalami N, Pazio A, Wozniak K, Janiak C. Dinuclear vanadium, copper, manganese and titanium complexes containing O, O, N-dichelating ligands: Synthesis, crystal structure and catalytic activity[J]. Inorg. Chim. Acta, 2013,406:241-250. doi: 10.1016/j.ica.2013.04.044

    37. [37]

      Adams H, Fenton D E, Minardi G, Mura E, Soliras C P. A coordination polymer derived from the copper (Ⅱ) complex of a bis-(salicylhydrazone) derived from iminodiacetic acid diethyl ester[J]. Inorg. Chem. Commun., 2000,3:24-28. doi: 10.1016/S1387-7003(99)00157-4

    38. [38]

      Maurya M R, Haldar C, Kumar A, Kuznetsov M L, Avecilla F, Pessoa J C. Vanadium complexes having[VO]2+, [VO]3+ and[VO2]+ cores with hydrazones of 2, 6 diformyl-4-methylphenol: Synthesis, characterization, reactivity, and catalytic potential[J]. Dalton Trans., 2013,42:11941-11962. doi: 10.1039/c3dt50469g

    39. [39]

      Shi F N, Cunha-Silva L, Lal R A, Ferreira S, Mafra L, Trindade T, Carlos L D, Paz F A A, Rocha J. Interconvertable modular framework and layered lanthanide (Ⅲ) etidronic acid coordination polymers[J]. J. Am. Chem. Soc., 2008,130:150-167. doi: 10.1021/ja074119k

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    9. [9]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    10. [10]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    11. [11]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    12. [12]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(1)
  • Abstract views(626)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return