Citation: Hou-Ting LIU, Li DING, Chuan-Cong ZHOU, Hui-Qi ZOU, Jing LU, Su-Na WANG, Yun-Wu LI. Synthesis, structure, and proton conductivity of a Co-MOF based on 3-(3′, 5′-dicarboxyphenyl)-6-carboxylic pyridine[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 596-606. doi: 10.11862/CJIC.2023.027 shu

Synthesis, structure, and proton conductivity of a Co-MOF based on 3-(3′, 5′-dicarboxyphenyl)-6-carboxylic pyridine

Figures(8)

  • A Co-MOF{[Co3(L)2(H2O)6]·3H2O}n(1) was obtained by hydrothermal reactions of rigid polycarboxylic acid organic ligand H3L (3-(3', 5'-dicarboxyphenyl)-6-carboxypyridine) and transition metal Co (Ⅱ).The IR spectrum and stability of 1 were characterized.The X-ray single crystal structure analyses showed that ligand L3- uses its three carboxylate groups and pyridine nitrogen atoms to connect Co (Ⅱ) cations to form a 3D porous framework with lattice water molecules filled in.The coordinated and lattice water molecules are connected by hydrogen bonds to form a continuous 1D water chain.To study the proton conduction behavior of complex 1, it was doped with Nafion to obtain a 1/Nafion composite membrane.The results of AC impedance analyses showed that the doping of complex 1 can increase the proton conductivity of the composite membrane by 40.3% compared with pure Nafion membrane.The studies of the structure-property relationship showed that the continuous hydrogen bond chains and hydrophilic channels in the crystal structure of 1 are the main reasons for its good proton conductivity.
  • 加载中
    1. [1]

      Biyikoglu A. Review of proton exchange membrane fuel cell models[J]. Int. J. Hydrog. Energy, 2005,30(11):1181-1212. doi: 10.1016/j.ijhydene.2005.05.010

    2. [2]

      Peighambardoust S J, Rowshanzamir R, Amjadi R. Review of the proton exchange membranes for fuel cell applications[J]. Int. J. Hydrog. Energy, 2010,35(17):9349-9384. doi: 10.1016/j.ijhydene.2010.05.017

    3. [3]

      Daud W R W, Rosli R E, Majlan E H, Hamid S A A, Mohamed R, Husaini T. PEM fuel cell system control: A review[J]. Renew. Energy, 2017,113:620-638. doi: 10.1016/j.renene.2017.06.027

    4. [4]

      Kang D W, Kang M, Hong C S. Post-synthetic modification of porous materials: Superprotonic conductivities and membrane applications in fuel cells[J]. J. Mater. Chem. A, 2020,8:7474-7494. doi: 10.1039/D0TA01733G

    5. [5]

      Lim D W, Kitigawa H. Rational strategies for proton-conductive metalorganic frameworks[J]. Chem. Soc. Rev., 2021,50:6349-6368. doi: 10.1039/D1CS00004G

    6. [6]

      Chakraborty D, Ghorai A, Bhanja P, Banerjee S, Bhaumik A. High proton conductivity in a charge carrier-induced Ni(Ⅱ) metal-organic framework[J]. New J. Chem., 2022,46:1867-1876. doi: 10.1039/D1NJ04685C

    7. [7]

      Si G R, Yang F, He T, Kong X J, Wu W, Li T C, Wang K, Li J R. Enhancing proton conductivity in Zr-MOFs through tuning metal cluster connectivity[J]. J. Mater. Chem. A, 2022,10:1236-1240. doi: 10.1039/D1TA09348G

    8. [8]

      Zhou C C, Liu H T, Ding L, Lu J, Wang S N, Li Y W. Single-crystal-to-single-crystal transformations among three Mn-MOFs containing different water molecules induced by reaction time: Crystal structures and proton conductivities[J]. Dalton Trans., 2021,50:11077-11090. doi: 10.1039/D1DT01163D

    9. [9]

      Li R Y, Liu H T, Zhou C C, Chu Z T, Lu J, Wang S N, Jin J, Yan W F. Ligand substitution induced single-crystal-to-single-crystal transformations in two Ni(Ⅱ) coordination compounds displaying consequential changes in proton conductivity[J]. Inorg. Chem. Front., 2020,7:1880-1891. doi: 10.1039/D0QI00088D

    10. [10]

      Wang M, Luo H B, Zhang J, Liu S X, Xue C, Zou Y, Ren X M. An open-framework manganese(Ⅱ) phosphite and its composite membranes with polyvinylidene fluoride exhibiting intrinsic water-assisted proton conductance[J]. Dalton Trans., 2017,46:7904-7910. doi: 10.1039/C7DT01418J

    11. [11]

      Xing X S, Fu Z H, Zhang N N, Yu X Q, Wang M S, Guo G C. High proton conduction in an excellent water-stable gadolinium metal-organic framework[J]. Chem. Commun., 2019,55:1241-1244. doi: 10.1039/C8CC08700H

    12. [12]

      Yang S L, Sun P P, Yuan Y Y, Zhang C X, Wang Q L. High proton conduction behavior in 12-connected 3D porous lanthanide-organic frameworks and their polymer composites[J]. CrystEngComm, 2018,20:3066-3073. doi: 10.1039/C8CE00476E

    13. [13]

      Luo H B, Ren Q, Wang P, Zhang J, Wang L, Ren X M. High proton conductivity achieved by encapsulation of imidazole molecules into proton-conducting MOF-808[J]. ACS Appl. Mater. Interfaces, 2019,11:9164-9171. doi: 10.1021/acsami.9b01075

    14. [14]

      Qiu M, Wu H, Cao L, Shi B B, He X Y, Geng H B, Mao X L, Yang P F, Jiang Z Y. etal-organic nanogel with sulfonated three-dimen-sional continuous channels as a proton conductor[J]. ACS Appl. Mater. Interfaces, 2020,12:19788-19796. doi: 10.1021/acsami.0c02048

    15. [15]

      Liu S S, Han Z, Yang J S, Huang S Z, Dong X Y, Zang S Q. Sulfonic groups lined along channels of metal-organic frameworks (MOFs) for super-proton conductor[J]. Inorg. Chem., 2020,59:396-402. doi: 10.1021/acs.inorgchem.9b02649

    16. [16]

      Tian Y M, Liang G, Fan T, Shang J, Shang S S, Ma Y S, Matsuda R, Liu M X, Wang M, Li L C, Kitagawa S. Grafting free carboxylic acid groups onto the pore surface of 3D porous coordination polymers for high proton conductivity[J]. Chem. Mater., 2019,31:8494-8503. doi: 10.1021/acs.chemmater.9b02924

    17. [17]

      Jia W, Tang B B, Wu P Y. Novel composite proton exchange membrane with connected long-range ionic nanochannels constructed via exfoliated Nafion-boron nitride nanocomposite[J]. ACS Appl. Mater. Interfaces, 2017,9(17):14791-14800. doi: 10.1021/acsami.7b00858

    18. [18]

      Kitao T, Zhang Y, Kitigawa S, Wang B, Uemura T. Hybridization of MOFs and polymers[J]. Chem. Soc. Rev., 2017,46:3108-3133. doi: 10.1039/C7CS00041C

    19. [19]

      Wang H F, Zhao Y J, Shao Z C, Xu W J, Wu Q, Ding X L, Hou H W. Proton conduction of Nafion hybrid membranes promoted by NH3-modified Zn-MOF with host-guest collaborative hydrogen bonds for H2/O2 fuel cell applications[J]. ACS Appl. Mater. Interfaces, 2021,13:7485-7497. doi: 10.1021/acsami.0c21840

    20. [20]

      LI C J, LI R Y, CHU Z T, LIU H T, LU J, WANG S N, LI Y W. Synthesis, structure and proton conduction of a crystalline Ni(Ⅱ)-MOF with continuous hydrogen bonds[J]. Chinese J. Inorg. Chem., 2021,37(4):645-652.  

    21. [21]

      CHU Z T, HE Z Y, LIU H T, LU J, WANG S N. One Cd-MOFs based on the multi-carboxylate rigid ligand: Synthesis, structure and proton transfer property[J]. Journal of Liaocheng University (Natural Science Edition), 2020,33(1):47-52.  

    22. [22]

      CHU Z T, LI R Y, LIU H T, LU J, WANG S N. Syntheses, structures and proton conduction properties of two acidic Co(Ⅱ)-CPs[J]. Journal of Liaocheng University (Natural Science Edition), 2021,34(3):71-82.  

    23. [23]

      Patel H, Mansor N, Gadipelli S, Brett D, Guo Z. Superacidity in Nafion/MOF hybrid membranes retains water at low humidity to enhance proton conduction for fuel cells[J]. ACS Appl. Mater. Interfaces, 2016,4:30687-30691.

    24. [24]

      Donnadio A, Narducci R, Casciola M, Marmottini F, Amato R D, Jazestani M, Chiniforoshan H, Costantino F. Mixed membrane matrices based on Nafion/UiO-66/SO3H-UiO-66 nano-MOFs: Revealing the effect of crystal size, sulfonation, and filler loading on the mechanical and conductivity properties[J]. ACS Appl. Mater. Interfaces, 2017,9(48):42239-42246. doi: 10.1021/acsami.7b14847

    25. [25]

      Zhang J, Zhang R, Liu Y, Kong Y R, Luo H B, Zou Y, Zhai L, Ren X M. Acidic groups functionalized carbon dots capping channels of a proton conductive metal-organic framework by coordination bonds to improve the water-retention capacity and boost proton conduction[J]. ACS Appl. Mater. Interfaces, 2021,13(50):60084-60091. doi: 10.1021/acsami.1c20884

    26. [26]

      Wang L Y, Deng N P, Wang G, Ju J G, Cheng B W, Kang W M. Constructing amino-functionalized flower-like metal-organic framework nanofibers in sulfonated poly(ether sulfone) proton exchange membrane for simultaneously enhancing interface compatibility and proton conduction[J]. ACS Appl. Mater. Interfaces, 2019,11(43):39979-39990. doi: 10.1021/acsami.9b13496

    27. [27]

      Li X M, Wang Y M, Wu B, Zeng L. Efficient proton transport in stable functionalized channels of zirconium metal-organic frameworks[J]. ACS Appl. Energy Mater., 2021,4(8):8303-8310. doi: 10.1021/acsaem.1c01541

    28. [28]

      Gui D X, Dai X, Tao Z T, Zheng T, Wang X X, Silver M A, Shu J, Chen L H, Wang Y L, Zhang T T, Xie J, Zou L, Xia Y H, Zhang J J, Zhang J, Zhao L, Diwu J, Zhou R H, Chai Z F, Wang S. Unique proton transportation pathway in a robust inorganic coordination polymer leading to intrinsically high and sustainable anhydrous proton conductivity[J]. J. Am. Chem. Soc., 2018,140:6146-6155. doi: 10.1021/jacs.8b02598

    29. [29]

      Kim S, Joarder B, Hurd J A, Zhang J, Dawson K W, Gelfand B S, Wong N E, Shimizu G K H. Achieving superprotonic conduction in metal-organic frameworks through iterative design advances[J]. J. Am. Chem. Soc., 2018,140:1077-1082. doi: 10.1021/jacs.7b11364

    30. [30]

      Kreuer K D. On the complexity of proton conduction phenomena[J]. Solid State Ionics, 2000,136-137:149-160. doi: 10.1016/S0167-2738(00)00301-5

    31. [31]

      Agmon N. The Grotthuss mechanism[J]. Chem. Phys. Lett., 1995,244:456-462. doi: 10.1016/0009-2614(95)00905-J

    32. [32]

      Zhou C C, Liu H T, Ding L, Lu J, Wang S N, Li Y W. Proton conductivities of four low dimensional MOFs: Affected by the amount of chelated ligands[J]. CrystEngComm, 2021,23:5106-5115. doi: 10.1039/D1CE00589H

    33. [33]

      Zhou C C, Yan H, Liu H T, Li R Y, Lu J, Wang S N, Li Y W. Proton conductivity studies on five isostructural MOFs with different acidity induced by metal cations[J]. New J. Chem., 2020,44:17821-17830. doi: 10.1039/D0NJ04179C

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    11. [11]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    12. [12]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    18. [18]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    19. [19]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    20. [20]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

Metrics
  • PDF Downloads(7)
  • Abstract views(873)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return