Synthesis of Fe-doped CuS nanoparticles for the combination of photothermal and chemodynamic therapy
- Corresponding author: Feng LU, iamflu@njupt.edu.cn Qu-Li FAN, iamqlfan@njupt.edu.cn
Citation: Bo SUN, Ning ZHAO, Xin XU, Lai JIANG, Feng LU, Qu-Li FAN, Wei HUANG. Synthesis of Fe-doped CuS nanoparticles for the combination of photothermal and chemodynamic therapy[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 671-679. doi: 10.11862/CJIC.2023.026
Li X S, Lovell J F, Yoon J, Chen X Y. Clinical development and potential of photothermal and photodynamic therapies for cancer[J]. Nat. Rev. Clin. Oncol., 2020,17(11):657-674. doi: 10.1038/s41571-020-0410-2
Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J, West J L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proc. Natl. Acad. Sci. U.S.A., 2003,100(23):13549-13554. doi: 10.1073/pnas.2232479100
Mu J, Xiao M, Shi Y, Geng X W, Li H, Yin Y X, Chen X Y. The chemistry of organic contrast agents in the NIR-Ⅱ window[J]. Angew. Chem. Int. Ed., 2022,61(14)202114722.
Lu F, Li L L, Zhao T, Ding B Q, Liu J W, Wang Q, Xie C, Fan Q L, Huang W. Fabrication of semiconducting polymer-blend dots with strong near-infrared fluorescence and afterglow luminescence for bioimaging[J]. Dyes Pigm., 2022,200110124. doi: 10.1016/j.dyepig.2022.110124
Jiang Y Y, Li J C, Zhen X, Xie C, Pu K Y. Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: A comparative study[J]. Adv. Mater., 2018,30(14)1705980. doi: 10.1002/adma.201705980
Zhou M, Ku G, Pageon L, Li C. Theranostic probe for simultaneous in vivo photoacoustic imaging and confined photothermolysis by pulsed laser at 1 064 nm in 4T1 breast cancer model[J]. Nanoscale, 2014,6(24):15228-15235. doi: 10.1039/C4NR05386A
Zhao Y X, Pan H C, Lou Y B, Qiu X F, Zhu J J, Burda C. Plasmonic Cu2-xS nanocrystals: Optical and structural properties of copperdeficient copper (Ⅰ) sulfides[J]. J. Am. Chem. Soc., 2009,131(12)42534261.
Kershaw S V, Susha A S, Rogach A L. Narrow bandgap colloidal metal chalcogenide quantum dots: Synthetic methods, heterostructures, assemblies, electronic and infrared optical properties[J]. Chem. Soc. Rev., 2013,42(7):3033-3087. doi: 10.1039/c2cs35331h
CHEN Q T, SHI X D, LIANG W W, JIANG L Y, FANG S M, CHEN F H. Synthesis of fluorescence/MRI dual targeted imaging theranostics reagent[J]. Chinese J. Inorg. Chem., 2021,37(9):1555-1562.
Yang W T, Guo W S, Le W J, Lv G X, Zhang F H, Shi L, Wang X L, Wang J, Wang S, Chang J, Zhang B B. Albumin-bioinspired Gd∶CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy[J]. ACS Nano, 2016,10(11):10245-10257. doi: 10.1021/acsnano.6b05760
Gao D Y, Sheng Z H, Liu Y B, Hu D H, Zhang J, Zhang X J, Zheng H R, Yuan Z. Protein-modified CuS nanotriangles: A potential multimodal nanoplatform for in vivo tumor photoacoustic/magnetic resonance dual-modal imaging[J]. Adv. Healthc. Mater., 2017,6(1)1601094. doi: 10.1002/adhm.201601094
Zhang S H, Zha Z B, Yue X L, Liang X L, Dai Z F. Gadolinium chelate functionalized copper sulphide as a nanotheranostic agent for MR imaging and photothermal destruction of cancer cells[J]. Chem. Commun., 2013,49(60):6776-6778. doi: 10.1039/c3cc43440k
Wang Z J, Yu W J, Yu N, Li X, Feng Y R, Geng P, Wen M, Li M Q, Zhang H J, Chen Z G. Construction of CuS@Fe-MOF nanoplatforms for MRI-guided synergistic photothermal-chemo therapy of tumors[J]. Chem. Eng. J., 2020,400125877. doi: 10.1016/j.cej.2020.125877
Liu R F, Jing L J, Peng D, Li Y, Tian J, Dai Z F. Manganese (Ⅱ) chelate functionalized copper sulfide nanoparticles for efficient magnetic resonance/photoacoustic dual-modal imaging guided photothermal therapy[J]. Theranostics, 2015,5(10):1144-1153. doi: 10.7150/thno.11754
Lu F, Sang R Y, Tang Y, Xia H, Liu J W, Huang W, Fan Q L, Wang Q. Fabrication of a phototheranostic nanoplatform for single laser triggered NIR-Ⅱ fluorescence imaging-guided photothermal/chemo/antiangiogenic combination therapy[J]. Acta Biomater., 2022,151528536.
Tang Z M, Zhao P R, Wang H, Liu Y Y, Bu W B. Biomedicine meets Fenton chemistry[J]. Chem. Rev., 2021,121(4):1981-2019. doi: 10.1021/acs.chemrev.0c00977
Shi Y H, Yin J J, Peng Q Q, Lv X Y, Li Q Z, Yang D L, Song X J, Wang W J, Dong X C. An acidity-responsive polyoxometalate with inflammatory retention for NIR-Ⅱ photothermal-enhanced chemodynamic antibacterial therapy[J]. Biomater. Sci., 2020,8(21):6093-6099. doi: 10.1039/D0BM01165G
Wang Z J, Wang Y, Guo H H, Yu N, Ren Q, Jiang Q, Xia J D, Peng C, Zhang H J, Chen Z G. Synthesis of one-for-all type Cu5FeS4 nanocrystals with improved near infrared photothermal and Fenton effects for simultaneous imaging and therapy of tumor[J]. J. Colloid Interface Sci., 2021,592:116-126. doi: 10.1016/j.jcis.2021.02.037
Ding B B, Yu C, Li C X, Deng X R, Ding J X, Cheng Z Y, Xing B G, Ma P A, Lin J. cis-platinum pro-drug-attached CuFeS2 nanoplates for in vivo photothermal/photoacoustic imaging and chemotherapy/photothermal therapy of cancer[J]. Nanoscale, 2017,9(43):16937-16949. doi: 10.1039/C7NR04166G
Piao Z Y, Yang D, Cui Z J, He H Y, Mei S L, Lu H X, Fu Z Z, Wang L, Zhang W L, Guo R Q. Recent advances in metal chalcogenide quantum dots: From material design to biomedical applications[J]. Adv. Funct. Mater., 20222207662.
Fenton J L, Steimle B C, Schaak R E. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries[J]. Science, 2018,360(6388):513-517. doi: 10.1126/science.aar5597
Li Z Z, Saruyama M, Asaka T, Tatetsu Y, Teranishi T. Determinants of crystal structure transformation of ionic nanocrystals in cation exchange reactions[J]. Science, 2021,373(6552):332-337. doi: 10.1126/science.abh2741
Huang X J, Deng G Y, Han Y, Yang G Z, Zou R J, Zhang Z Y, Sun S Y, Hu J Q. Right Cu2-xS@MnS core-shell nanoparticles as a photo/H2O2-responsive platform for effective cancer theranostics[J]. Adv. Sci., 2019,6(20)1901461. doi: 10.1002/advs.201901461
Li Z, Ji Y J, Xie R G, Grisham S Y, Peng X G. Correlation of CdS nanocrystal formation with elemental sulfur activation and its implication in synthetic development[J]. J. Am. Chem. Soc., 2011,133(43):17248-17256. doi: 10.1021/ja204538f
Lu F, Wang J F, Tao C, Zhu J J. Highly monodisperse beta-cyclodextrincovellite nanoparticles for efficient photothermal and chemotherapy[J]. Nanoscale Horiz., 2018,3(5):538-544. doi: 10.1039/C8NH00026C
Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Appl. Surf. Sci., 2008,254(8):2441-2449. doi: 10.1016/j.apsusc.2007.09.063
Hessel C M, Pattani V P, Rasch M, Panthani M G, Koo B, Tunnell J W, Korgel B A. Copper selenide nanocrystals for photothermal therapy[J]. Nano Lett., 2011,11(6):2560-2566. doi: 10.1021/nl201400z
Wang Y D, Gao F C, Li X F, Niu G M, Yang Y F, Li H, Jiang Y Y. Tumor microenvironment-responsive fenton nanocatalysts for intensified anticancer treatment[J]. J. Nanobiotechnol., 2022,20(1)69. doi: 10.1186/s12951-022-01278-z
Gong F, Cheng L, Yang N L, Betzer O, Feng L Z, Zhou Q, Li Y Y, Chen R H, Popovtzer R, Liu Z. Ultrasmall oxygen-deficient bimetallic oxide MnWO X nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy[J]. Adv. Mater., 2019,31(23)1900730. doi: 10.1002/adma.201900730
Kim J, Cho H R, Jeon H, Kim D, Song C, Lee N, Choi S H, Hyeon T. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer[J]. J. Am. Chem. Soc., 2017,139(32):10992-10995. doi: 10.1021/jacs.7b05559
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
Di WU , Ruimeng SHI , Zhaoyang WANG , Yuehua SHI , Fan YANG , Leyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
Yuena Yu , Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Yinwu Su , Xuanwen Zheng , Jianghui Du , Boda Li , Tao Wang , Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
Yuan Chun , Lijun Yang , Jinyue Yang , Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
Houjin Li , Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016
Inset: the corresponding element contents
θ=(T-T0)/(Tmax-T0), where T is the temperature of the solution, T0 is the temperature of the surrounding environment, and Tmax is the temperature of the solution after laser irradiation
*p < 0.05, **p < 0.01, ***p < 0.001