Citation: Bo SUN, Ning ZHAO, Xin XU, Lai JIANG, Feng LU, Qu-Li FAN, Wei HUANG. Synthesis of Fe-doped CuS nanoparticles for the combination of photothermal and chemodynamic therapy[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 671-679. doi: 10.11862/CJIC.2023.026 shu

Synthesis of Fe-doped CuS nanoparticles for the combination of photothermal and chemodynamic therapy

Figures(6)

  • Copper sulfide (CuS) nanoparticles with strong absorption in the near-infrared region were synthesized in oleic acid (OA)-oleylamine (OM)-octadecene (ODE) system using copper acetylacetonate and sulfur powder as copper and sulfur sources respectively.By adjusting the activation solvent for the sulfur powder, the absorption peak can be tuned to around 1 064 nm which was beneficial for photothermal therapy.The Fe and Mn elements doped CuS nanoparticles were further prepared by the cation exchange approach, and the absorption peak can be retained after the reaction.Then, these hydrophobic nanoparticles were transferred into an aqueous solution by the microemulsion method, the obtained PEGylated (PEG=poly (ethylene glycol)) nanoparticles exhibited excellent dispersity and colloidal stability.Their photothermal performance and the hydroxyl radical (·OH) production before and after Fe3+ doping were investigated thereafter.The mass extinction coefficient of Fe3+ doped CuS nanoparticles after PEGylation (CuS∶FePEG) at 1064 nm was 37.5 L·g-1·cm-1, with a high photothermal conversion efficiency of around 43.7%.Although these values were slightly decreased compared with undoped CuS-PEG, their ability to produce ·OH was significantly improved.A higher inhibition ratio of cancer cells was observed with CuS∶FePEG nanoparticles under weak acid condition.And under 1 064 nm laser, these nanoparticles can kill cancer cells more effectively.Therefore, the prepared CuS∶Fe-PEG nanoparticles can be used for the combination of photothermal and chemodynamic therapy.
  • 加载中
    1. [1]

      Li X S, Lovell J F, Yoon J, Chen X Y. Clinical development and potential of photothermal and photodynamic therapies for cancer[J]. Nat. Rev. Clin. Oncol., 2020,17(11):657-674. doi: 10.1038/s41571-020-0410-2

    2. [2]

      Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J, West J L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proc. Natl. Acad. Sci. U.S.A., 2003,100(23):13549-13554. doi: 10.1073/pnas.2232479100

    3. [3]

      Mu J, Xiao M, Shi Y, Geng X W, Li H, Yin Y X, Chen X Y. The chemistry of organic contrast agents in the NIR-Ⅱ window[J]. Angew. Chem. Int. Ed., 2022,61(14)202114722.

    4. [4]

      Lu F, Li L L, Zhao T, Ding B Q, Liu J W, Wang Q, Xie C, Fan Q L, Huang W. Fabrication of semiconducting polymer-blend dots with strong near-infrared fluorescence and afterglow luminescence for bioimaging[J]. Dyes Pigm., 2022,200110124. doi: 10.1016/j.dyepig.2022.110124

    5. [5]

      Jiang Y Y, Li J C, Zhen X, Xie C, Pu K Y. Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: A comparative study[J]. Adv. Mater., 2018,30(14)1705980. doi: 10.1002/adma.201705980

    6. [6]

      Zhou M, Ku G, Pageon L, Li C. Theranostic probe for simultaneous in vivo photoacoustic imaging and confined photothermolysis by pulsed laser at 1 064 nm in 4T1 breast cancer model[J]. Nanoscale, 2014,6(24):15228-15235. doi: 10.1039/C4NR05386A

    7. [7]

      Zhao Y X, Pan H C, Lou Y B, Qiu X F, Zhu J J, Burda C. Plasmonic Cu2-xS nanocrystals: Optical and structural properties of copperdeficient copper (Ⅰ) sulfides[J]. J. Am. Chem. Soc., 2009,131(12)42534261.

    8. [8]

      Kershaw S V, Susha A S, Rogach A L. Narrow bandgap colloidal metal chalcogenide quantum dots: Synthetic methods, heterostructures, assemblies, electronic and infrared optical properties[J]. Chem. Soc. Rev., 2013,42(7):3033-3087. doi: 10.1039/c2cs35331h

    9. [9]

      CHEN Q T, SHI X D, LIANG W W, JIANG L Y, FANG S M, CHEN F H. Synthesis of fluorescence/MRI dual targeted imaging theranostics reagent[J]. Chinese J. Inorg. Chem., 2021,37(9):1555-1562.  

    10. [10]

      Yang W T, Guo W S, Le W J, Lv G X, Zhang F H, Shi L, Wang X L, Wang J, Wang S, Chang J, Zhang B B. Albumin-bioinspired Gd∶CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy[J]. ACS Nano, 2016,10(11):10245-10257. doi: 10.1021/acsnano.6b05760

    11. [11]

      Gao D Y, Sheng Z H, Liu Y B, Hu D H, Zhang J, Zhang X J, Zheng H R, Yuan Z. Protein-modified CuS nanotriangles: A potential multimodal nanoplatform for in vivo tumor photoacoustic/magnetic resonance dual-modal imaging[J]. Adv. Healthc. Mater., 2017,6(1)1601094. doi: 10.1002/adhm.201601094

    12. [12]

      Zhang S H, Zha Z B, Yue X L, Liang X L, Dai Z F. Gadolinium chelate functionalized copper sulphide as a nanotheranostic agent for MR imaging and photothermal destruction of cancer cells[J]. Chem. Commun., 2013,49(60):6776-6778. doi: 10.1039/c3cc43440k

    13. [13]

      Wang Z J, Yu W J, Yu N, Li X, Feng Y R, Geng P, Wen M, Li M Q, Zhang H J, Chen Z G. Construction of CuS@Fe-MOF nanoplatforms for MRI-guided synergistic photothermal-chemo therapy of tumors[J]. Chem. Eng. J., 2020,400125877. doi: 10.1016/j.cej.2020.125877

    14. [14]

      Liu R F, Jing L J, Peng D, Li Y, Tian J, Dai Z F. Manganese (Ⅱ) chelate functionalized copper sulfide nanoparticles for efficient magnetic resonance/photoacoustic dual-modal imaging guided photothermal therapy[J]. Theranostics, 2015,5(10):1144-1153. doi: 10.7150/thno.11754

    15. [15]

      Lu F, Sang R Y, Tang Y, Xia H, Liu J W, Huang W, Fan Q L, Wang Q. Fabrication of a phototheranostic nanoplatform for single laser triggered NIR-Ⅱ fluorescence imaging-guided photothermal/chemo/antiangiogenic combination therapy[J]. Acta Biomater., 2022,151528536.

    16. [16]

      Tang Z M, Zhao P R, Wang H, Liu Y Y, Bu W B. Biomedicine meets Fenton chemistry[J]. Chem. Rev., 2021,121(4):1981-2019. doi: 10.1021/acs.chemrev.0c00977

    17. [17]

      Shi Y H, Yin J J, Peng Q Q, Lv X Y, Li Q Z, Yang D L, Song X J, Wang W J, Dong X C. An acidity-responsive polyoxometalate with inflammatory retention for NIR-Ⅱ photothermal-enhanced chemodynamic antibacterial therapy[J]. Biomater. Sci., 2020,8(21):6093-6099. doi: 10.1039/D0BM01165G

    18. [18]

      Wang Z J, Wang Y, Guo H H, Yu N, Ren Q, Jiang Q, Xia J D, Peng C, Zhang H J, Chen Z G. Synthesis of one-for-all type Cu5FeS4 nanocrystals with improved near infrared photothermal and Fenton effects for simultaneous imaging and therapy of tumor[J]. J. Colloid Interface Sci., 2021,592:116-126. doi: 10.1016/j.jcis.2021.02.037

    19. [19]

      Ding B B, Yu C, Li C X, Deng X R, Ding J X, Cheng Z Y, Xing B G, Ma P A, Lin J. cis-platinum pro-drug-attached CuFeS2 nanoplates for in vivo photothermal/photoacoustic imaging and chemotherapy/photothermal therapy of cancer[J]. Nanoscale, 2017,9(43):16937-16949. doi: 10.1039/C7NR04166G

    20. [20]

      Piao Z Y, Yang D, Cui Z J, He H Y, Mei S L, Lu H X, Fu Z Z, Wang L, Zhang W L, Guo R Q. Recent advances in metal chalcogenide quantum dots: From material design to biomedical applications[J]. Adv. Funct. Mater., 20222207662.

    21. [21]

      Fenton J L, Steimle B C, Schaak R E. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries[J]. Science, 2018,360(6388):513-517. doi: 10.1126/science.aar5597

    22. [22]

      Li Z Z, Saruyama M, Asaka T, Tatetsu Y, Teranishi T. Determinants of crystal structure transformation of ionic nanocrystals in cation exchange reactions[J]. Science, 2021,373(6552):332-337. doi: 10.1126/science.abh2741

    23. [23]

      Huang X J, Deng G Y, Han Y, Yang G Z, Zou R J, Zhang Z Y, Sun S Y, Hu J Q. Right Cu2-xS@MnS core-shell nanoparticles as a photo/H2O2-responsive platform for effective cancer theranostics[J]. Adv. Sci., 2019,6(20)1901461. doi: 10.1002/advs.201901461

    24. [24]

      Li Z, Ji Y J, Xie R G, Grisham S Y, Peng X G. Correlation of CdS nanocrystal formation with elemental sulfur activation and its implication in synthetic development[J]. J. Am. Chem. Soc., 2011,133(43):17248-17256. doi: 10.1021/ja204538f

    25. [25]

      Lu F, Wang J F, Tao C, Zhu J J. Highly monodisperse beta-cyclodextrincovellite nanoparticles for efficient photothermal and chemotherapy[J]. Nanoscale Horiz., 2018,3(5):538-544. doi: 10.1039/C8NH00026C

    26. [26]

      Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Appl. Surf. Sci., 2008,254(8):2441-2449. doi: 10.1016/j.apsusc.2007.09.063

    27. [27]

      Hessel C M, Pattani V P, Rasch M, Panthani M G, Koo B, Tunnell J W, Korgel B A. Copper selenide nanocrystals for photothermal therapy[J]. Nano Lett., 2011,11(6):2560-2566. doi: 10.1021/nl201400z

    28. [28]

      Wang Y D, Gao F C, Li X F, Niu G M, Yang Y F, Li H, Jiang Y Y. Tumor microenvironment-responsive fenton nanocatalysts for intensified anticancer treatment[J]. J. Nanobiotechnol., 2022,20(1)69. doi: 10.1186/s12951-022-01278-z

    29. [29]

      Gong F, Cheng L, Yang N L, Betzer O, Feng L Z, Zhou Q, Li Y Y, Chen R H, Popovtzer R, Liu Z. Ultrasmall oxygen-deficient bimetallic oxide MnWO X nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy[J]. Adv. Mater., 2019,31(23)1900730. doi: 10.1002/adma.201900730

    30. [30]

      Kim J, Cho H R, Jeon H, Kim D, Song C, Lee N, Choi S H, Hyeon T. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer[J]. J. Am. Chem. Soc., 2017,139(32):10992-10995. doi: 10.1021/jacs.7b05559

  • 加载中
    1. [1]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    2. [2]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    3. [3]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    4. [4]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    5. [5]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    6. [6]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    9. [9]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    12. [12]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    13. [13]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    14. [14]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    15. [15]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    16. [16]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    17. [17]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    18. [18]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    19. [19]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    20. [20]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

Metrics
  • PDF Downloads(21)
  • Abstract views(1283)
  • HTML views(439)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return