Citation: Dong LI, Jia-Xin SONG, Lian KONG, Zhen ZHAO. Effect of P promoter on the oxidative dehydrogenation of ethane over Ni-Al-O catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 637-648. doi: 10.11862/CJIC.2023.023 shu

Effect of P promoter on the oxidative dehydrogenation of ethane over Ni-Al-O catalysts

Figures(11)

  • A series of phosphorus-modified Ni-Al-O catalysts (Px-Ni-Al-O) were prepared by the one-pot hydrothermal method.The performance of the oxidative dehydrogenation of ethane to ethylene over series catalysts was evaluated by using O2 as an oxidant.The results showed that the P incorporation can not only reduce the crystallite sizes of NiO, but also affect the interaction between Ni and Al.In the temperature range of 350-475℃, the selectivities towards ethylene over P-modified Ni-Al-O catalysts were higher than those over the unmodified catalyst, and the addition of the appropriate amount of P could also improve the ethane conversion.The selectivity and yield of ethylene over the P0.15-Ni-Al-O catalyst were 61.4% and 31.9% at 475℃, respectively.Moreover, the P-modified catalyst showed a strong resistance to carbon deposition and remained the catalytic performance for 22 h after a continuous reaction.
  • 加载中
    1. [1]

      Najari S, Saeidi S, Concepcion P, Dionysiou D D, Bhargava S K, Lee A F, Wilson K. Oxidative dehydrogenation of ethane: Catalytic and mechanistic aspects and future trends[J]. Chem. Soc. Rev., 2021,50(7):4564-4605. doi: 10.1039/D0CS01518K

    2. [2]

      Li G M, Liu C, Cui X J, Yang Y H, Shi F. Oxidative dehydrogenation of light alkanes with carbon dioxide[J]. Green. Chem., 2021,23(2):689-707. doi: 10.1039/D0GC03705B

    3. [3]

      Choudhary V R, Mulla S A R. Coupling of thermal cracking with noncatalytic oxidative conversion of ethane to ethylene[J]. AIChE J., 1997,43(6):1545-1550. doi: 10.1002/aic.690430617

    4. [4]

      Solsona B, Concepción P, Nieto J M L, Dejoz A, Agouram S, Soriano M D, Tottes V., Jiménez J J, Castellón E R. Nickel oxide supported on porous clay heterostructures as selective catalysts for the oxidative dehydrogenation of ethane[J]. Catal. Sci. Technol., 2016,6(10):3419-3429. doi: 10.1039/C5CY01811K

    5. [5]

      Cotillo M H, Unsihuay D, Santolalla-Vargas C E, Doig A P, Kou R S, Picasso G. Catalysts based on Ni-Fe oxides supported on γ-Al2O3 for the oxidative dehydrogenation of ethane[J]. Catal. Today, 2020,356:312-321. doi: 10.1016/j.cattod.2019.05.044

    6. [6]

      RuiHerrera Y, Chen J E, Li H C, Cathy Y H. Generalized mechanistic framework for ethane dehydrogenation and oxidative dehydrogenation on molybdenum oxide catalysts[J]. ACS Catal., 2020,10(12):6952-6968. doi: 10.1021/acscatal.0c01073

    7. [7]

      GE X, SUN Q, SHEN J Y. A Study on Cr/CeO2 catalysts and their catalytic performance for dehydrogenation of ethane[J]. Chinese J. Inorg. Chem., 2004(8):987-990.  

    8. [8]

      Song G Z, Wang Q, Yang L, Liao D H, Li S. Oxidative dehydrogenation of ethane with CO2 over Mo/LDO catalyst: The active species of Mo controlled by LDO[J]. Catalysts, 2022,12(5)493. doi: 10.3390/catal12050493

    9. [9]

      Zhou Y L, Wei F F, Lin J, Li L, Li X Y, Qi H F, Pan X L, Liu X Y, Huang C D, Lin S, Wang X D. Sulfate-modified NiAl mixed oxides as effective C—H bond-breaking agents for the sole production of ethylene from ethane[J]. ACS Catal., 2020,10(14):7619-7629. doi: 10.1021/acscatal.0c02347

    10. [10]

      Zhou Y L, Lin J, Li L, Tian M, Li X Y, Pan X L, Chen Y, Wang X D. Improving the selectivity of Ni-Al mixed oxides with isolated oxygen species for oxidative dehydrogenation of ethane with nitrous oxide[J]. J. Catal., 2019,377:438-448. doi: 10.1016/j.jcat.2019.07.050

    11. [11]

      Solsona B, Concepción P, Demicol B, Hernández S, Delgado J J, Calvino J J, Nieto J M L. Selective oxidative dehydrogenation of ethane over SnO2-promoted NiO catalysts[J]. J. Catal., 2012,295:104-114. doi: 10.1016/j.jcat.2012.07.028

    12. [12]

      Heracleous E, Lemonidou A A. Ni-Me-O mixed metal oxides for the effective oxidative dehydrogenation of ethane to ethylene-effect of promoting metal Me[J]. J. Catal., 2010,270(1):67-75. doi: 10.1016/j.jcat.2009.12.004

    13. [13]

      Zhu H B, Rosenfeld D C, Harb M, Anjum D H, Hedhili M N, Ould-Chikh S, Basset J M. Ni-M-O (M=Sn, Ti, W) catalysts prepared by a dry mixing method for oxidative dehydrogenation of ethane[J]. ACS Catal., 2016,6(5):2852-2866. doi: 10.1021/acscatal.6b00044

    14. [14]

      Ducarme V, Martin G A. Low temperature oxidative dehydrogenation of ethane over Ni-based catalysts[J]. Catal. Lett., 1994,23:97-101. doi: 10.1007/BF00812135

    15. [15]

      Santander J, López E, Diez A, Dennehy M, Pedernera M, Tonetto G. Ni-Nb mixed oxides: One-pot synthesis and catalytic activity for oxidative dehydrogenation of ethane[J]. Chem. Eng. J., 2014,255:185-194. doi: 10.1016/j.cej.2014.06.048

    16. [16]

      Heracleous E, Lemonidou A A. Ni-Nb-O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part Ⅰ: Characterization and catalytic performance[J]. J. Catal., 2006,237(1):162-174.

    17. [17]

      Heracleous E, Delimitis A, Nalbandian L, Lemonidou A A. HRTEM characterization of the nanostructural features formed in highly active Ni-Nb-O catalysts for ethane ODH[J]. Appl. Catal. A-Gen., 2007,325(2):220-226. doi: 10.1016/j.apcata.2007.02.030

    18. [18]

      Heracleous E, Lee A F, Wilson K, Lemonidou A A. Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: Structural characterization and reactivity studies[J]. J. Catal., 2005,231(1):159-171. doi: 10.1016/j.jcat.2005.01.015

    19. [19]

      Gaab S, Machli M, Find J, Grasselli R K, Lercher J A. Oxidative dehydrogenation of ethane over novel Li/Dy/Mg mixed oxides: Structure-activity study[J]. Top. Catal., 2003,23(1):151-158.

    20. [20]

      Kong L, Li D, Zhao Z, Li J M, Zhao L L, Fan X Q, Xiao X, Xie Z A. Preparation, characterization, and catalytic performance of rod-like Ni-Nb-O catalysts for the oxidative dehydrogenation of ethane at low temperature[J]. Catal. Sci. Technol., 2019,9(13):3416-3425. doi: 10.1039/C9CY00519F

    21. [21]

      Skoufa Z, Xantri G, Heracleous E. A study of Ni-Al-O mixed oxides as catalysts for the oxidative conversion of ethane to ethylene[J]. Appl. Catal. A-Gen., 2014,471:107-117. doi: 10.1016/j.apcata.2013.11.042

    22. [22]

      Lin X Z, Li G C, Huang C J, Weng W Z, Wan H L. P-modified cobalt oxide: A novel and effective catalyst for oxidative dehydrogenation of propane[J]. Chin. Chem. Lett., 2013,24(9):789-792. doi: 10.1016/j.cclet.2013.05.013

    23. [23]

      Ivan S B, Popescu I, Fechete I, Garin F, Pârvulescu V I, Marcu I C. The effect of phosphorus on the catalytic performance of nickel oxide in ethane oxidative dehydrogenation[J]. Catal. Sci. Technol., 2016,6(18):6953-6964. doi: 10.1039/C6CY00946H

    24. [24]

      Ko J, Muhlenkamp J A, Bonita Y, LiBretto N J, Miller J T, Hicks J C, Schenider W F. Experimental and computational investigation of the role of P in moderating ethane dehydrogenation performance over Ni-based catalysts[J]. Ind. Eng. Chem. Res., 2020,59(28):12666-12676. doi: 10.1021/acs.iecr.0c00908

    25. [25]

      Maiti A, Govind N, Kung P, Smith D K, Miller J E, Zhang C, Whitwell G. Effect of surface phosphorus on the oxidative dehydrogenation of ethane: A first-principles investigation[J]. J. Chem. Phys., 2002,117(17):8080-8088. doi: 10.1063/1.1510122

    26. [26]

      El-Idrissi J, Kacimi M, Bozon-Verduraz F, Ziyad M. Oxidative dehydrogenation of ethane over Cr/TiO2 modified by phosphorus[J]. Catal. Lett., 1998,56(4):221-225. doi: 10.1023/A:1019025600050

    27. [27]

      Singh , R P, Banares M, Deo G. Effect of phosphorous modifier on V2O5/TiO2 catalyst: ODH of propane[J]. J. Catal., 2005,233(2):388-398. doi: 10.1016/j.jcat.2005.05.010

    28. [28]

      Khatib S J, Fierro J L G, Bañares M A. Effect of phosphorous additive on the surface chromium oxide species on alumina for propane oxidation to propylene[J]. Top. Catal., 2009,52(10):1459-1469. doi: 10.1007/s11244-009-9318-x

    29. [29]

      Bai Z, Li P, Liu L P, Xiong G. Oxidative dehydrogenation of propane over MoOx and POx supported on carbon nanotube catalysts[J]. ChemCatChem, 2012,4(2):260-264. doi: 10.1002/cctc.201100242

    30. [30]

      Gao X X, Wang J, Xu A J, Jia M L. Oxidative dehydrogenation of propane over Ni-Al mixed oxides: Effect of the preparation methods on the activity of surface Ni(Ⅱ) species[J]. Catal. Lett., 2021,151(2):497-506. doi: 10.1007/s10562-020-03317-6

    31. [31]

      Liu Y M, Cong P J, Doolen R D, Guan S H, Markov V, Woo L, Zeyß S, Dingerdissen U. Discovery from combinatorial heterogeneous catalysis: A new class of catalyst for ethane oxidative dehydrogenation at low temperatures[J]. Appl. Catal. A-Gen., 2003,254(1):59-66. doi: 10.1016/S0926-860X(03)00263-1

    32. [32]

      Li J H, Li R G, Wang C C, Huang C J, Weng W Z, Wan H L. Oxidative dehydrogenation of ethane to ethylene over mesoporous Ni-based catalysts[J]. Chin. J. Catal., 2009,30(8):714-716. doi: 10.1016/S1872-2067(08)60122-9

    33. [33]

      Solsona B, Nieto J M L, Concepción P, Dejoz A, Lvars F, Vázquez M I. Oxidative dehydrogenation of ethane over Ni-W-O mixed metal oxide catalysts[J]. J. Catal., 2011,280(1):28-39. doi: 10.1016/j.jcat.2011.02.010

    34. [34]

      Zhu H B, Rosenfeld D C, Anjum D H, Sangaru S S, Saih Y, Chikh S O, Basset J M. Ni-Ta-O mixed oxide catalysts for the low temperature oxidative dehydrogenation of ethane to ethylene[J]. J. Catal., 2015,329:291-306. doi: 10.1016/j.jcat.2015.05.023

    35. [35]

      Biju V, Khadar M A. Electronic structure of nanostructured nickel oxide using Ni2p XPS analysis[J]. J. Nanopart. Res., 2002,4(3):247-253. doi: 10.1023/A:1019949805751

    36. [36]

      Veenendaal M A V, Sawatzky G A. Nonlocal screening effects in 2p X-ray photoemission spectroscopy core-level line shapes of transition metal compounds[J]. Phys. Rev. Lett., 1993,70(16):2459-2462. doi: 10.1103/PhysRevLett.70.2459

    37. [37]

      Zhu H B, Dong H L, Laveille P, Saih Y, Caps V, Basset J M. Metal oxides modified NiO catalysts for oxidative dehydrogenation of ethane to ethylene[J]. Catal. Today, 2014,228:58-64. doi: 10.1016/j.cattod.2013.11.061

    38. [38]

      Wang C, Cui X B, Liu J Y, Zhou X, Cheng X Y, Sun P, Hu X L, Li X W, Zheng J, Lu G Y. Design of superior ethanol gas sensor based on Al-doped NiO nanorod-flowers[J]. ACS Sens., 2016,1(2):131-136. doi: 10.1021/acssensors.5b00123

    39. [39]

      Stoyanova M, Konova P, Nikolov P, Naydenov A, Christoskova S, Mehandjiev D. Alumina-supported nickel oxide for ozone decomposition and catalytic ozonation of CO and VOCs[J]. Chem. Eng. J., 2006,122(1/2):41-46.

    40. [40]

      Iwamoto M, Yoda Y, Egashira M, Seiyama T. Study of metal oxide catalysts by temperature programmed desorption chemisorption of oxygen on nickel oxide[J]. J. Phys. Chem., 1976,80(18):1989-1994. doi: 10.1021/j100559a008

    41. [41]

      Shi Z J, Lian Y F, Liao F H, Zhou X H, Gu Z N, Zhang Y G, Lijima S. Purification of single-wall carbon nanotubes[J]. Solid State Commun., 1999,112(1):35-37. doi: 10.1016/S0038-1098(99)00278-1

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    16. [16]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(2)
  • Abstract views(692)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return