Construction of Sb2O3/BiVO4/WO3 heterojunction for photoelectrocatalytic synthesis of hydrogen peroxide
- Corresponding author: Wen‐Long GUO, gwlcqnu@cqnu.edu.cn Xi LIU, xliu@cqnu.edu.cn
Citation: Yin‐Qiong XIE, Shi TANG, Shan‐Shan WANG, Xin LIAN, Wen‐Long GUO, Xi LIU. Construction of Sb2O3/BiVO4/WO3 heterojunction for photoelectrocatalytic synthesis of hydrogen peroxide[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 433-442. doi: 10.11862/CJIC.2023.022
Wang S C, Wang X, Liu B Y, Guo Z C, Ostrikov K, Wang L Z, Huang W. Vacancy defect engineering of BiVO4 photoanodes for photoelectrochemical water splitting[J]. Nanoscale, 2021,13(43):17989-18009. doi: 10.1039/D1NR05691C
Liu J L, Zou Y S, Jin B J, Zhang K, Park J H. Hydrogen peroxide production from solar water oxidation[J]. ACS Energy Lett., 2019,4(12):3018-3027. doi: 10.1021/acsenergylett.9b02199
Gao R, Yan D P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation[J]. Adv. Energy Mater., 2020,10(11)1900954. doi: 10.1002/aenm.201900954
Tayebi M, Lee B K. Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting[J]. Renew. Sust. Energ. Rev., 2019,111:332-343. doi: 10.1016/j.rser.2019.05.030
Sharma P, Jang J W, Lee J S. Key strategies to advance the photoelectrochemical water splitting performance of α-Fe2O3 photoanode[J]. ChemCatChem, 2019,11(1):157-179. doi: 10.1002/cctc.201801187
GUO Y Q, FAN A L, PANG W, XIE D K, GAO D C. Preparation of plate NiWP@polyhedral NiWO electrocatalyst for hydrogen evolution[J]. Chinese J. Inorg. Chem., 2022,38(7):1283-1290.
Li F, Leung D Y C. Highly enhanced performance of heterojunction Bi2S3/BiVO4 photoanode for photoelectrocatalytic hydrogen production under solar light irradiation[J]. Chem. Eng. Sci., 2020,211115266. doi: 10.1016/j.ces.2019.115266
Samsudin M F R, Ullah H, Bashiri R, Mohamed N M, Sufian S, Ng Y H. Experimental and DFT insights on microflower g-C3N4/BiVO4 photocatalyst for enhanced photoelectrochemical hydrogen generation from lake water[J]. ACS Sustain. Chem. Eng., 2020,8(25):9393-9403. doi: 10.1021/acssuschemeng.0c02063
Ayyub M M, Chhetri M, Gupta U, Roy A, Rao C N R. Photochemical and photoelectrochemical hydrogen generation by splitting seawater[J]. Chem. Eur. J., 2018,24(69):18455-18462. doi: 10.1002/chem.201804119
FANG J X, DENG W M, JIANG J Z, ZOU J. Preparation of β-FeOOH/U-g-C3N4 heterojunction and their performances in photoelectrocatalytic hydrogen evolution reaction[J]. Journal of Wuhan Institute of Technology, 2020,42(2):165-171.
Yang L, Chen H, Xu Y T, Qian R, Chen Q, Fang Y X. Synergetic effects by Co2+ and PO43- on Mo-doped BiVO4 for an improved photoanodic H2O2 evolution[J]. Chem. Eng. Sci., 2022,251117435. doi: 10.1016/j.ces.2022.117435
Zhang Z J, Tsuchimochi T, Ina T, Kumabe Y, Muto S, Ohara K, Yamada H, Ten-no S L, Tachikawa T. Binary dopant segregation enables hematite-based heterostructures for highly efficient solar H2O2 synthesis[J]. Nat. Commun., 2022,13(1)1499. doi: 10.1038/s41467-022-28944-y
Shi X J, Zhang Y R, Siahrostami S, Zheng X L. Light-driven BiVO4-C fuel cell with simultaneous production of H2O2[J]. Adv. Energy Mater., 2018,8(23)1801158. doi: 10.1002/aenm.201801158
Jeon T H, Kim H, Kim H I, Choi W. Highly durable photoelectrohemical H2O2 production via dual photoanode and cathode processes under solar simulating and external bias-free conditions[J]. Energy Environ. Sci., 2020,13(6):1730-1742. doi: 10.1039/C9EE03154E
Xue Y D, Wang Y T, Pan Z H, Sayama K. Electrochemical and photoelectrochemical water oxidation for hydrogen peroxide production[J]. Angew. Chem. Int. Ed., 2021,60(19):10469-10480. doi: 10.1002/anie.202011215
Torres-Pinto A, Sampaio M J, Silva C G, Faria J L, Silva A M T. Recent strategies for hydrogen peroxide production by metal-free carbon nitride photocatalysts[J]. Catalysts, 2019,9(12)990. doi: 10.3390/catal9120990
Chu W H, Gao N Y, Yin D Q, Krasner S W, Mitch W A. Impact of UV/H2O2 pre-oxidation on the formation of haloacetamides and other nitrogenous disinfection byproducts during chlorination[J]. Environ. Sci. Technol., 2014,48(20):12190-12198. doi: 10.1021/es502115x
Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process[J]. Angew. Chem. Int. Ed., 2006,45(42):6962-6984. doi: 10.1002/anie.200503779
XU W B, ZHOU K, ZHANG Y H, HE L, YANG L. Advanced treatment of cyanide wastewater with high concentration by the two-step precipitation coupled with H2O2 Oxidation[J]. Industrial Water Treatment, 2022. doi: 10.19965/j.cnki.iwt.2022-0346
Hu S. Membrane -less photoelectrochemical devices for H2O2 production: Efficiency limit and operational constraint[J]. Sustain. Energy Fuels, 2019,3(1):101-114. doi: 10.1039/C8SE00329G
Topalovic T, Nierstrasz V A, Bautista L, Jocic D, Navarro A, Warmoeskerken M M C G. Analysis of the effects of catalytic bleaching on cotton[J]. Cellulose, 2007,14(4):385-400. doi: 10.1007/s10570-007-9120-5
LI Y D, YIN J L. Development of cathode catalyst for H2O2 reduction on fuel cells[J]. Chemical Engineer, 2011,25(6):42-44. doi: 10.3969/j.issn.1002-1124.2011.06.013
Iwase A, Nozawa S, Adachi S, Kudo A. Preparation of Mo-and W-doped BiVO4 fine particles prepared by an aqueous route for photocatalytic and photoelectrochemical O2 evolution[J]. J. Photochem. Photobiol. A, 2018,353:284-291. doi: 10.1016/j.jphotochem.2017.11.025
Tayebi M, Lee B K. The effects of W/Mo-Co-doped BiVO4 photoanodes for improving photoelectrochemical water splitting performance[J]. Catal. Today, 2021,361:183-190. doi: 10.1016/j.cattod.2020.03.066
Li X H, Dong Y J, Hu G Y, Ma K W, Chen M X, Ding Y. Morphology engineering of BiVO4 with CoOx derived from cobalt-containing polyoxometalate as co-catalyst for oxygen evolution[J]. Chem. Asian J., 2021,16(19):2967-2972. doi: 10.1002/asia.202100805
Sayama K, Nomura A, Arai T, Sugita T, Abe R, Yanagida M, Oi T, Iwasaki Y, Abe Y, Sugihara H. Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment[J]. J. Phys. Chem. B, 2006,110(23):11352-11360. doi: 10.1021/jp057539+
HU Y, AN L, HAN X, HOU C Y, WANG H Z, LI Y G, ZHANG Q H. Preparation of RhO2 modified BiVO4 thin film photoanodes and their photoelectrocatalytic water splitting performance[J]. J. Inorg. Mater., 2022,37(8):873-882.
Fuku K, Sayama K. Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode[J]. Chem. Commun., 2016,52(31):5406-5409. doi: 10.1039/C6CC01605G
Fuku K, Miyase Y, Miseki Y, Gunji T, Sayama K. WO3/BiVO4 photoanode coated with mesoporous Al2O3 layer for oxidative production of hydrogen peroxide from water with high selectivity[J]. RSC Adv., 2017,7(75):47619-47623. doi: 10.1039/C7RA09693C
Baek J H, Gill T M, Abroshan H, Park S, Shi X J, Nørskov J, Jung H S, Siahrostami S, Zheng X L. Selective and efficient Gd-doped BiVO4 photoanode for two-electron water oxidation to H2O2[J]. ACS Energy Lett., 2019,4(3):720-728. doi: 10.1021/acsenergylett.9b00277
Zhang K, Liu J L, Wang L Y, Jin B J, Yang X F, Zhang S L, Park J H. Near-complete suppression of oxygen evolution for photoelectrochemical H2O oxidative H2O2 synthesis[J]. J. Am. Chem. Soc., 2020,142(19):8641-8648. doi: 10.1021/jacs.9b13410
Zhang K, Lu Y, Zou Q Q, Jin J, Cho Y, Wang Y Q, Zhang Y, Park J H. Tuning selectivity of photoelectrochemical water oxidation via facet-engineered interfacial energetics[J]. ACS Energy Lett., 2021,6(11):4071-4078. doi: 10.1021/acsenergylett.1c01831
Wang L Y, Lu Y, Han N N, Dong C R, Lin C, Lu S Y, Min Y L, Zhang K. Suppressing water dissociation via control of intrinsic oxygen defects for awakening solar H2O-to-H2O2 generation[J]. Small, 2021,17(13)2100400. doi: 10.1002/smll.202100400
Wang Y, Lian X, Zhou Y, Guo W L, He H C. Synthesis and characterization of Sb2O3: A stable electrocatalyst for efficient H2O2 production and accumulation and effective degradation of dyes[J]. New J. Chem., 2021,45(20):8958-8964. doi: 10.1039/D1NJ00637A
Guo W L, Xie Y Q, Liu Y X, Shang S Y, Lian X, Liu X. Effects of Sb2O3 polymorphism on the performances for electrocatalytic H2O2 production via the two-electron water oxidation reaction[J]. Appl. Surf. Sci., 2022,606155006. doi: 10.1016/j.apsusc.2022.155006
Guo W L, Wang Y, Lian X, Nie Y, Tian S J, Wang S S, Zhou Y, Henkelman G. Insights into the multiple effects of oxygen vacancies on CuWO4 for photoelectrochemical water oxidation[J]. Catal. Sci. Technol., 2020,10(21):7344-7351. doi: 10.1039/D0CY01430C
Nair V, Perkins C L, Lin Q Y, Law M. Textured nanoporous Mo: BiVO4 photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution[J]. Energy Environ. Sci., 2016,9(4):1412-1429. doi: 10.1039/C6EE00129G
SHEN N, SHEN Y, PAN H, XU L H, LI K, NI Z W, NI K, LING H L. Preparation and photocatalytic properties of Cu-doped BiVO4 catalyst[J]. Chinese J. Inorg. Chem., 2021,37(10):1839-1846. doi: 10.11862/CJIC.2021.214
LENG C, MA C Y, WANG R T, ZHAO G H, ZHANG Q Y. Preparation and visible light catalytic activity of plasma-treated TiO2/WO3/Bi2WO6 nanocomposites[J]. Fine Chemicals, 2022,39(8):1603-1611.
Selim S, Francàs L, García-Tecedor M, Corby S, Blackman C, Gimenez S, Durrant J R, Kafizas A. WO3/BiVO4: Impact of charge separation at the timescale of water oxidation[J]. Chem. Sci., 2019,10(9):2643-2652. doi: 10.1039/C8SC04679D
Kangkun N, Ponchio C. Photoelectrodeposition of BiVO4 layer on FTO/WO3 photoanodes for highly efficient photoelectrocatalytic chemical oxygen demand sensor applications[J]. Appl. Surf. Sci., 2020,526146686. doi: 10.1016/j.apsusc.2020.146686
Miyase Y, Takasugi S, Iguchi S, Miseki Y, Gunji T, Sasaki K, Fujita E, Sayama K. Modification of BiVO4/WO3 composite photoelectrodes with Al2O3 via chemical vapor deposition for highly efficient oxidative H2O2 production from H2O[J]. Sustain. Energy Fuels, 2018,2(7):1621-1629. doi: 10.1039/C8SE00070K
ZHU L J, XUE H, XIAO L R, CHEN Q H. Preparation and photocatalytic performance of cubic Sb2O3 nanocrystalline[J]. Chinese J. Inorg. Chem., 2012,28(10):2165-2169.
ZHANG X Q, LU G X. Thin film protection strategy of Ⅲ-Ⅴ semiconductor photoelectrode for water splitting[J]. Prog. Chem., 2020,32(9):1368-1375.
Ding C M, Shi J Y, Wang D G, Wang Z J, Wang N, Liu G J, Xiong F Q, Li C. Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias[J]. Phys. Chem. Chem. Phys., 2013,15(13):4589-4595. doi: 10.1039/c3cp50295c
Toma F M, Cooper J K, Kunzelmann V, McDowell M T, Yu J, Larson D M, Borys N J, Abelyan C, Beeman J W, Yu K M, Yang J H, Chen L, Shaner M R, Spurgeon J, Houle F A, Persson K A, Sharp I D. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes[J]. Nat. Commun., 2016,7(1)12012. doi: 10.1038/ncomms12012
Lee D K, Choi K S. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition[J]. Nat. Energy, 2018,3(1):53-60.
McDowell M T, Lichterman M F, Spurgeon J M, Hu S, Sharp I D, Brunschwig B S, Lewis N S. Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings[J]. J. Phys. Chem. C, 2014,118(34):19618-19624. doi: 10.1021/jp506133y
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Rong Tian , Yadi Yang , Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Inset of (d): the electronic images of these four films
Points with error bars are constructed using the average of two films and their standard deviation
Inset of (c): the pictures of 3c-BiVO4/WO3 (left) and 1c-Sb2O3/BiVO4/WO3 (right) films after 9 000 s of reaction at 1.89 V (vs RHE)