Citation: Shu-Juan ZHENG, Jia-Xin LI, Wen-Shi ZHONG, Wei JIANG, Geng-Shen HU. Preparation and electrochemical performance for supercapacitors of chitosan-based porous carbon materials[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 492-500. doi: 10.11862/CJIC.2023.019 shu

Preparation and electrochemical performance for supercapacitors of chitosan-based porous carbon materials

Figures(7)

  • Nitrogen-containing mesoporous carbon with different specific surface areas and pore volumes were prepared by using colloidal silica spheres as the hard template, chitosan as a carbon precursor, and ZnCl2 as activation agent. The morphology, surface area, and pore structure of the prepared carbons were characterized by different techniques. The influence of the ratio of silica to chitosan and the use of ZnCl2 on the pore volume and surface area of porous carbon materials were explored. It was found that the nitrogen-doped mesoporous carbon (CSi-1.75) without using activation agent showed lowest surface area but the pore volume can reach up to 4.53 cm3·g-1. The carbon (CSi-1.75-Zn) prepared by using ZnCl2 as activation agent, had the larger surface area (1 032 m2·g -1) and the pore volume decreased to 1.99 cm3·g-1 and had more pyridine-nitrogen and pyrrole-nitrogen. In the three electrodes with 6.0 mol·L-1 KOH as the electrolyte, when the current density was 0.5 A·g-1, the specific capacitance of CSi-1.75-Zn can reach 344 F·g -1, while the specific capacitance of CSi-1.75 was only 255 F·g-1. This indicates that the surface area of the carbon material had the greatest impact on the supercapacitive performance. The capacitance contribution analysis results showed that both the double-layer capacitance and pseudo capacitance of CSi-1.75-Zn were improved compared with CSi-1.75, indicating that larger specific surface area and more pyridine-nitrogen and pyrrole-nitrogen are conducive to improving the capacitance of carbon materials.
  • 加载中
    1. [1]

      Chang Q H, Li L M, Sai L M, Shi W Z, Chen Q, Huang L. Interconnected binary carbon hybrids for supercapacitor electrode[J]. Electrochim. Acta, 2017,251:293-300. doi: 10.1016/j.electacta.2017.08.109

    2. [2]

      Luo X Y, Chen Y, Mo Y. A review of charge storage in porous carbonbased supercapacitors[J]. New Carbon Mater., 2021,36(1):49-68. doi: 10.1016/S1872-5805(21)60004-5

    3. [3]

      Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nat. Mater., 2008,7(11):845-854. doi: 10.1038/nmat2297

    4. [4]

      Kang Y J, Chun S J, Lee S S, Kim B Y, Kim J H, Chung H G, Lee S Y, Kim W. All-solidstate flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels[J]. ACS Nano, 2012,6(7):6400-6406. doi: 10.1021/nn301971r

    5. [5]

      Yu Z L, Qin B, Ma Z Y, Huang J, Li S C, Zhao H Y, Li H, Zhu Y B, Wu H A, Yu S H. Hard carbon aerogels: Superelastic hard carbon nanofiber aerogels[J]. Adv. Mater., 2019,31(23)1970168. doi: 10.1002/adma.201970168

    6. [6]

      Chen C M, Zhang Q, Zhao X C, Zhang B S, Kong Q Q, Yang M G, Yang Q H, Wang M Z, Yang Y G, Schlögl R, Su D S. Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage[J]. J. Mater. Chem., 2012,22(28):14076-14084. doi: 10.1039/c2jm31426f

    7. [7]

      Gong C C, Wang X Z, Ma D H, Chen H F, Zhang S S, Liao Z X. Microporous carbon from a biological waste-stiff silkworm for capacitive energy storage[J]. Electrochim. Acta, 2016,220:331-339. doi: 10.1016/j.electacta.2016.10.120

    8. [8]

      Guo D D, Qian J, Xin R R, Zhang Z, Jiang W, Hu G S, Fan M. Facile synthesis of nitrogen-enriched nanoporous carbon materials for high performance supercapacitors[J]. J. Colloid Interface Sci., 2019,538:199-208. doi: 10.1016/j.jcis.2018.11.107

    9. [9]

      Li W Y, Wang T, Guo J, Liu P G, Yin X W, Wu D L. Organic resin based high surface area and N-enriched porous carbon nanosheets for supercapacitors[J]. Appl. Surf. Sci., 2022,59915388.

    10. [10]

      Yu H, Zhang W L, Li T, Zhi L, Dang L Q, Liu Z H, Lei Z B. Capacitive performance of porous carbon nanosheets derived from biomass cornstalk[J]. RSC Adv., 2017,7(2):1067-1074. doi: 10.1039/C6RA25899A

    11. [11]

      Sun F, Gao J H, Pi X X, Wang L J, Yang Y Q, Qu Z B, Wu S H. High performance aqueous supercapacitor based on highly nitrogendoped carbon nanospheres with unimodal mesoporosity[J]. J. Power Sources, 2017,337:189-196. doi: 10.1016/j.jpowsour.2016.10.086

    12. [12]

      Zhang Y, Qu T T, Xiang K, Shen Y, Chen S Y, Xie M J, Guo X F. In situ formation/carbonization of quinone-amine polymers towards hierarchical porous carbon foam with high faradaic activity for energy storage[J]. J. Mater. Chem. A, 2018,6:2353-2359. doi: 10.1039/C7TA09644E

    13. [13]

      Zhang D, Gao H Q, Hua G M, Zhou H T, Wu J C, Zhu B W, Liu C, Yang J H, Chen D. Boosting specific energy and power of carbon-ionic liquid supercapacitors by engineering carbon pore structures[J]. Front. Chem., 2020,8:68-76. doi: 10.3389/fchem.2020.00068

    14. [14]

      Pokrzywinski J, Keum J K, Ruther R E, Self E C, Chi M F, Meyer I H, Littrell K C, Aulakh D, Marble S, Ding J, Wriedt M, Nanda J, Mitlin D. Unrivaled combination of surface area and pore volume in micelle-templated carbon for supercapacitor energy storage[J]. J. Mater. Chem. A, 2017,5(26):13511-13525. doi: 10.1039/C7TA03655H

    15. [15]

      Dong X S, Liu X W, Chen H, Xu X Y, Jiang H C, Gu C L, Li Q, Qiao S L, Zhang X J, Hu Y Q. Hard emplate-assisted N, P-doped multifunctional mesoporous carbon for supercapacitors and hydrogen evolution reaction[J]. J. Mater. Sci., 2021,56(3):2385-2398. doi: 10.1007/s10853-020-05303-0

    16. [16]

      Ling Z, Wang Z Y, Zhang M D, Yu C, Wang G, Dong Y F, Liu S H, Wang Y W, Qiu J S. Sustainable synthesis and assembly of biomassderived B/N Co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Adv. Funct. Mater., 2016,26(1):111-119. doi: 10.1002/adfm.201504004

    17. [17]

      Guo D D, Xin R R, Zhang Z, Jiang W, Hu G S, Fan M H. N-doped hierarchically micro-and mesoporous carbons with superior performance in supercapacitors[J]. Electrochim. Acta, 2018,291:103-113. doi: 10.1016/j.electacta.2018.08.109

    18. [18]

      Yuan M Y, Zhang Y Q, Niu B, Jiang F, Yang X N, Li M. Chitosanderived hybrid porous carbon with the novel tangerine pith-like surface as supercapacitor electrode[J]. J. Mater. Sci., 2019,54(23):14456-14468. doi: 10.1007/s10853-019-03911-z

    19. [19]

      Olejniczak A, Lezanska M, Wloch J, Kucinska A, Lukaszewicz J P. Novel nitrogen-containing mesoporous carbons prepared from chitosan[J]. J. Mater. Chem. A, 2013,1(31):8961-8967. doi: 10.1039/c3ta11337j

    20. [20]

      Yan W, Meng Z H, Zou M Y, Miao H, Ma F X, Yu R, Qiu W, Liu X Y, Lin N B. Neutralization reaction in synthesis of carbon materials for supercapacitors[J]. Chem. Eng. J., 2020,381122547. doi: 10.1016/j.cej.2019.122547

    21. [21]

      Li B W, Hu J C, Xiong H, Xiao Y. Application and properties of microporous carbons activated by ZnCl2: Adsorption behavior and activation mechanism[J]. ACS Omega, 2020,5(16):9398-9407. doi: 10.1021/acsomega.0c00461

    22. [22]

      Kim D K, Bong S, Jin X Z, Seong K D, Hwang M, Kim N D, You N H, Piao Y Z. Facile in situ synthesis of multiple-heteroatom-doped carbons derived from polyimide precursors for flexible all-solid-state supercapacitors[J]. ACS Appl. Mater. Interfaces, 2019,11(2):1996-2005. doi: 10.1021/acsami.8b15162

    23. [23]

      Chen Y, Xu X H, Ma R, Sun S C, Lin J H, Luo J, Huang H M. Prepa-ration of hierarchical porous carbon by pyrolyzing sargassum under microwave: The internal connection between structure-oriented regulation and performance optimization of supercapacitors[J]. J. Energy Storage, 2022,53105190. doi: 10.1016/j.est.2022.105190

    24. [24]

      Szabó L, Xu X T, Uto K, Henzie J, Yamauchi Y, Ichinose I, Ebara M. Tailoring the structure of chitosan-based porous carbon nanofiber architectures toward efficient capacitive charge storage and capacitive deionization[J]. ACS Appl. Mater. Interfaces, 2022,14(3):4004-4021. doi: 10.1021/acsami.1c20199

    25. [25]

      Chen H J, Wei H M, Fu N, Qian W, Liu Y P, Lin H L, Han S. Nitrogen-doped porous carbon using ZnCl 2 as activating agent for high-performance supercapacitor electrode materials[J]. J. Mater. Sci., 2018,53(4):2669-2684. doi: 10.1007/s10853-017-1453-3

    26. [26]

      Xu X W, Shen J F, Li N, Ye M X. Microwave-assisted synthesis of graphene/CoMoO4 nanocomposites with enhanced supercapacitor performance[J]. J. Alloy. Compd., 2014,616:58-65. doi: 10.1016/j.jallcom.2014.07.047

    27. [27]

      Fang B Z, Binder L. A novel carbon electrode material for highly improved EDLC performance[J]. J. Phys. Chem. B, 2006,110(15):7877-7882. doi: 10.1021/jp060110d

    28. [28]

      Pu X J, Zhao D, Fu C L, Chen Z X, Cao S N, Wang C S, Cao Y L. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves[J]. Angew. Chem. Int. Ed., 2021,60(39):21310-21318. doi: 10.1002/anie.202104167

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    14. [14]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    15. [15]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

Metrics
  • PDF Downloads(14)
  • Abstract views(950)
  • HTML views(268)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return