Citation: Yan-Ying RAO, Bing-Gui WANG, Zhang-Liang LI, Xue-Wen CHEN, Li-Rong QIU, Hong XU, Jian-Hui HUANG. Facile fabrication and surface-enhanced Raman scattering properties of ordered Au/Ag nanobowl array[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 753-764. doi: 10.11862/CJIC.2023.018 shu

Facile fabrication and surface-enhanced Raman scattering properties of ordered Au/Ag nanobowl array

  • Corresponding author: Yan-Ying RAO, yanyingrao@ptu.edu.cn
  • Received Date: 30 September 2022
    Revised Date: 18 December 2022

Figures(8)

  • Herein, we present a novel and simple method to fabricate a large-area ordered Au/Ag nanobowl (Au/AgNB) array based on SiO2 colloidal crystals by wet chemosynthesis. The arrays combine the advantages of gold and silver and have been well recognized as excellent surface-enhanced Raman scattering (SERS) substrates in practical application. First of all, a 3D SiO2 colloidal crystal was arrayed on the glass substrate as a template. Then, a layer of Au nanoshell (AuNS) was deposited on the 3D SiO2 template by in-situ growth method with the help of Au nanoparticle (AuNP) seeds. Afterward, silver nanoshells were further deposited on the surface of AuNS by HCHO-reduced Ag+, then Ag/Au double nanoshell (Ag/AuNS) array was formed. A monolayer-ordered reversed Ag/AuNB array was conveniently obtained by an acrylic ester-modified biaxial-oriented polypropylene (BOPP). The ordered Au/AgNB array with adjustable periodic holes, shapes, and sizes could be obtained when the SiO2 core was etched by HF solution. With prominent stability and reproducibility, the SERS analytical enhancement factor (AEF) of this ordered Au/AgNB array could reach 2.23×107, which shows high SERS-enhancing activity and can be used as a universal SERS substrate.
  • 加载中
    1. [1]

      Zhai Q G, Bu X H, Mao C Y, Zhao X, Daemen L, Cheng Y Q, Ramirez-Cuesta A J, Feng P Y. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials[J]. Nat. Commun., 2016,713645. doi: 10.1038/ncomms13645

    2. [2]

      Feng J R, Lv F, Zhang W Y, Li P H, Wang K, Yang C, Wang B, Yang Y, Zhou J H, Lin F, Wang G C, Guo S J. Iridium-Based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis[J]. Adv. Mater., 2017,29(47)1703798. doi: 10.1002/adma.201703798

    3. [3]

      Seo J, Lee J, Kim Y. Ultrasensitive plasmon-free surface-enhanced Raman spectroscopy with femtomolar detection limit from 2D van der Waals heterostructure[J]. Nano Lett., 2020,20(3):1620-1630. doi: 10.1021/acs.nanolett.9b04645

    4. [4]

      Zheng Y H, Soeriyadi A H, Rosa L, Ng S H, Bach U, Gooding J J. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection[J]. Nat. Commun., 2015,6(1):8797-8803. doi: 10.1038/ncomms9797

    5. [5]

      Kong X M, Xi Y T, Le Duff P, Chong X Y, Li E, Ren F H, Rorrer G L, Wang A X. Detecting explosive molecules from nanoliter solution: A new paradigm of SERS sensing on hydrophilic photonic crystal biosilica[J]. Biosens. Bioelectron., 2017,88:63-70. doi: 10.1016/j.bios.2016.07.062

    6. [6]

      Zou X, Silva R, Huang X, Alsharab J F, Asefa T. A self-cleaning porous TiO2-Ag core-shell nanocomposite material for surface-enhanced Raman scattering[J]. Chem. Commun., 2013,49(4):382-384. doi: 10.1039/C2CC35917K

    7. [7]

      Zhong L B, Yin J, Zheng Y M, Liu Q, Cheng X X, Luo F H. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates[J]. Anal. Chem., 2014,86(13):6262-6267. doi: 10.1021/ac404224f

    8. [8]

      Gahlaut S K, Savargaonkar D, Sharan C, Yadav S, Singh J P. SERS platform for dengue diagnosis from clinical samples employing a hand held Raman spectrometer[J]. Anal. Chem., 2020,92(3):2527-2534. doi: 10.1021/acs.analchem.9b04129

    9. [9]

      Imai R, Tanaka M, Hashimoto H, Asoh H. Facile synthesis of size-and shape-controlled freestanding Au nanohole arrays by sputter deposition using anodic porous alumina templates[J]. Nanotechnology, 2020,31(41)415303. doi: 10.1088/1361-6528/ab9f76

    10. [10]

      Hong G S, Li C, Qi L M. Facile fabrication of two-dimensionally ordered macroporous silver thin films and their application in molecular sensing[J]. Adv. Funct. Mater., 2010,20(21):3774-3783. doi: 10.1002/adfm.201001177

    11. [11]

      Dong Y H, Laaksonen A, Huo F, Gao Q W, Ji X Y. Hydrated ionic liquids boost the trace detection capacity of proteins on TiO2 support[J]. Langmuir, 2021,37(16):5012-5021. doi: 10.1021/acs.langmuir.1c00525

    12. [12]

      Reza K K, Wang J, Vaidyanathan R, Dey S, Wang Y L, Trau M. Electrohydrodynamic-induced SERS immunoassay for extensive multiplexed biomarker sensing[J]. Small, 2017,13(9)1602902. doi: 10.1002/smll.201602902

    13. [13]

      Wang Z Y, Zong S F, Li W, Wang C L, Xu S H, Chen H, Cui Y P. SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: Putting theory into practice[J]. J. Am. Chem. Soc., 2012,134(6):2993-3000. doi: 10.1021/ja208154m

    14. [14]

      Fang S, Hung H C, Sinclair A, Peng Z, Tao B, Galvan D D, Jain P, Li B W, Jiang S Y, Yu Q M. Hierarchical zwitterionic modification of a SERS substrate enables real-time drug monitoring in blood plasma[J]. Nat. Commun., 2016,7(7)13437.

    15. [15]

      Sandeep S P, Gonzalo R G, Siraj S, Tazara L L, Claramaria R G, Inocencio H C, Pedro C S, Tanya C V, Elder D R. Ultra-sensitive SERS substrate for label-free therapeutic drug monitoring of paclitaxel and cyclophosphamide in blood serum[J]. Anal. Chem., 2019,91(3):2100-2111. doi: 10.1021/acs.analchem.8b04523

    16. [16]

      Panikar S S, Banu N, Escobar E R, García G R, Cervantes-Martínez J, Villegas T C, Salas P, Rosa E D. Stealth modified bottom up SERS substrates for label-free therapeutic drug monitoring of doxorubicin in blood serum[J]. Talanta, 2020,218121138. doi: 10.1016/j.talanta.2020.121138

    17. [17]

      Tang H B, Meng G W, Huang Q, Zhang Z, Huang Z L, Zhu C H. Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls[J]. Adv. Funct. Mater., 2012,22:218-224. doi: 10.1002/adfm.201102274

    18. [18]

      Sánchez-Iglesias A, Aldeanueva-Potel P, Ni W, Pérez-Juste J, Pastoriza-Santos I, Alvarez-Puebla R A, Mbenkum B N, Liz-Marzán L M. Chemical seeded growth of Ag nanoparticle arrays and their application as reproducible SERS substrates[J]. Nano Today, 2010,5(1):21-27. doi: 10.1016/j.nantod.2010.01.002

    19. [19]

      Ding C Q, Tian Y. Gold nanocluster-based fluorescence biosensor for targeted imaging in cancer cells and ratiometric determination of intracellular pH[J]. Biosens. Bioelectron., 2015,65:183-190. doi: 10.1016/j.bios.2014.10.034

    20. [20]

      Li Y, Zhang Y L, Zhao M, Zhou Q Q, Wang L L, Wang H Z, Wang X H, Zhan L S. A simple aptamer-functionalized gold nanorods based biosensor for the sensitive detection of MCF-7 breast cancer cells[J]. Chem. Commun., 2016,52:3959-3961. doi: 10.1039/C6CC01014H

    21. [21]

      Liao S, Luo Z, Metternich J B, Zenobi R, Stellacci F. Quantification of surface composition and segregation on AuAg bimetallic nanoparticles by MALDI MS[J]. Nanoscale, 2020,12(44):22639-22644. doi: 10.1039/D0NR05061J

    22. [22]

      Liao W L, Liu K, Chen Y J, Hu J P, Gan Y. Au-Ag bimetallic nanoparticles decorated silicon nanowires with fixed and dynamic hot spots for ultrasensitive 3D SERS sensing[J]. J. Alloy. Compd., 2021,868159136. doi: 10.1016/j.jallcom.2021.159136

    23. [23]

      Rao Y Y, Zhao X X, Li Z L, Huang J H. Phenolic acids induced growth of 3D ordered gold nanoshell composite array as sensitive SERS nanosensor for antioxidant capacity assay[J]. Talanta, 2018,190:174-181. doi: 10.1016/j.talanta.2018.07.069

    24. [24]

      Rao Y Y, Tao Q, An M, Rong C H, Dong J, Dai Y R, Qian W P. Novel and simple route to fabricate 2D ordered gold nanobowl arrays based on 3D colloidal crystals[J]. Langmuir, 2011,27(21):13308-13313. doi: 10.1021/la203158q

    25. [25]

      RAO Y Y, LI Z L, HUANG J H, JIANG Y H, ZHAO X X. Preparation and SERS properties of 3D ordered gold nanoshells arrays[J]. Chinese J. Inorg. Chem., 2018,34(7):1231-1239.  

    26. [26]

      Jiang J, Bosnick K, Maillard M, Brus L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals[J]. J. Phys. Chem. B, 2003,107(37):9964-9972. doi: 10.1021/jp034632u

    27. [27]

      Kim K, Choi J Y, Shin K S. Raman scattering characterization of 1,4-phenylenediisocyanide in Au-Au and Ag-Au Nanogaps[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2013,100:3-9. doi: 10.1016/j.saa.2012.01.045

    28. [28]

      Do Nascimento G M, Temperini M. Studies on the resonance Raman spectra of polyaniline obtained with near-IR excitation[J]. J. Raman Spectrosc., 2008,39(7):772-778. doi: 10.1002/jrs.1841

    29. [29]

      Su Q Q, Ma X Y, Dong J, Jiang C Y, Qian W P. A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars[J]. ACS Appl. Mater. Interfaces, 2011,3(6):1873-1879. doi: 10.1021/am200057f

  • 加载中
    1. [1]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    4. [4]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    5. [5]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    6. [6]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    10. [10]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    11. [11]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    12. [12]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    18. [18]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    19. [19]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    20. [20]

      Tiantian ManFulin ZhuYaqi HuangYuhao PiaoYan SuShengyuan DengYing Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036

Metrics
  • PDF Downloads(4)
  • Abstract views(753)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return