Citation: Quan-Liang YANG, Meng-Jiao XU, Xia FENG, ROUZITUOHUTI Amannisaihan, MULATI Kulisen, JUMA Asihati. Preparation, luminescence properties, and energy transfer of color-tunable whitlockite-type Ca8MgBi(PO4)7∶Ce3+, Tb3+ phosphors[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 415-421. doi: 10.11862/CJIC.2023.016 shu

Preparation, luminescence properties, and energy transfer of color-tunable whitlockite-type Ca8MgBi(PO4)7∶Ce3+, Tb3+ phosphors

  • Corresponding author: Meng-Jiao XU, xmj_1117@163.com
  • Received Date: 26 July 2022
    Revised Date: 3 January 2023

Figures(4)

  • A series of Ca8MgBi(PO4)7∶Ce3+, Tb3+ phosphors with whitlockite-type structure and adjustable color were prepared by the high-temperature solid-phase method. The phase composition, microstructure, and luminescence properties were studied by X-ray powder diffraction (XRD), scanning electron microscope (SEM), and fluorescence spectroscopy. X-ray diffraction results confirmed doping a small amount of Ce3+ and Tb3+ did not change the crystal structure of the matrix. The energy transfer between Ce3+-Tb3+ was confirmed by the fluorescence spectrum and fluorescence lifetime curve. The energy transfer mechanism was quadrupole-quadrupole interaction, and the energy transfer efficiency could reach 81%. The emission color of the series Ca8MgBi(PO4)7∶0.08Ce3+, yTb3+ phosphors can be adjusted from blue light to green light by changing the doping concentrations of Tb3+, realizing the controllable emission color change.
  • 加载中
    1. [1]

      Zhang X J, Yu J B, Wang J, Lei B F, Liu Y L, Chou Y J, Xie R J, Zhang H W, Li Y R, Tian Z F, Li Y, Su Q. All-inorganic light convertor based on phosphor-in-glass engineering for nextgeneration modular high-brightness white LEDs/LDs[J]. ACS Photonics, 2017,4(4):986-995. doi: 10.1021/acsphotonics.7b00049

    2. [2]

      George N C, Denault K A, Seshadri R. Phosphors for solid-state white lighting[J]. Annu. Rev. Mater. Res., 2013,43:481-501. doi: 10.1146/annurev-matsci-073012-125702

    3. [3]

      McKittrick J, Shea-Rohwer L E. Review: Down conversion materials for solid-state lighting[J]. J. Am. Ceram. Soc., 2014,97:1327-1352. doi: 10.1111/jace.12943

    4. [4]

      Zhang J, Shi Y R, An S S. Photoluminescence properties of Ca9La (PO4)5SiO4F2: Ce3+/Tb3+/Mn2+ phosphors for applications in white light-emitting diodes and optical thermometers[J]. Spectrochim. Acta A, 2020,229(15)117886.

    5. [5]

      Cheng J, Zhang J, Bian X T, Zhai Z Y, Shi J. Photoluminescence properties, Judd-Ofelt analysis, and optical temperature sensing of Eu3+-doped Ca3La7(SiO4)5(PO4) O2 luminescent materials[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2020,230118057. doi: 10.1016/j.saa.2020.118057

    6. [6]

      Nohara A, Takeshita S, Isobe T. Mixed-solvent strategy for solvothermal synthesis of well-dispersed YBO3: Ce3+, Tb3+ nanocrystals[J]. RSC Adv., 2014,22:11219-11224.

    7. [7]

      Feng N N, Bai S W, Wang C L, Wu G, Zhang G Q, Yang J G. Energy transfer and thermal stability of novel green-emitting Ca3Y (PO4)3: Ce3+, Tb3+ phosphors for white LEDs[J]. Opt. Mater., 2019,96109317. doi: 10.1016/j.optmat.2019.109317

    8. [8]

      Huo J S, Lv W, Shao B Q, Feng Y, Zhao S, You H P. Color tunable emission via efficient Ce3+/Tb3+ energy transfer pair in MgYSi2O5N oxynitride phosphor for near-UV-pumped white LEDs[J]. Dyes Pigment., 2017,139:174-179. doi: 10.1016/j.dyepig.2016.12.012

    9. [9]

      Leng Z H, Li L P, Che X L, Li G S. A bridge role of Tb3+ in broadband excited Sr3Y (PO4)3: Ce3+, Tb3+, Sm3+ phosphors with superior thermal stability[J]. Mater. Des., 2017,118:245-255. doi: 10.1016/j.matdes.2017.01.038

    10. [10]

      Zhang X G, Huang Y M, Gong M L. Dual-emitting Ce3+, Tb3+ codoped LaOBr phosphor: Luminescence, energy transfer and ratiometric temperature sensing[J]. Chem. Eng. J., 2017,307:291-299. doi: 10.1016/j.cej.2016.08.087

    11. [11]

      Yang C, Peng Z J, Hu J, Zhao P H, Shen S H, Song K X. Nitriding improvement of luminescence properties and energy-transfer behaviors of LaMgAl11-xSi3x/4O19-3x/2Nx: 0.55Ce3+, 0.25Tb3+ phosphors for UV-light pumping lamps[J]. Opt. Mater., 2022,124111980. doi: 10.1016/j.optmat.2022.111980

    12. [12]

      Jeong G J, Kang T W, Park Y J, Park Y J, Kim S W, Jeong G J, Lee Y, Park Y J, Bae B. Development of a cyan blue-emitting Ba3La2(BO3)4: Ce3+, Tb3+ phosphor for use in dental glazing materials: Color tunable emission and energy transfer[J]. RSC Adv., 2021,11(40):24949-24957. doi: 10.1039/D1RA04384F

    13. [13]

      Du W H, Zhang N, Zhuo N Z, Xie L Y, Jiang T, Zhu Y H, Cheng S W, Wang H B. Photoluminescence properties and energy transfer of apatite-type Sr3LaNa (PO4)3F: Ce3+, Tb3+ phosphors[J]. Mater. Res. Express, 2021,6(12)126209.

    14. [14]

      Jiao M M, Dong L P, Xu Q F, Zhang L C, Wang D H, Yang C L. The structures and luminescence properties of Sr4Gd3Na3(PO4)6F2: Ce3+, Tb3+ green phosphors with zero-thermal quenching of Tb3+ for WLEDs[J]. Dalton Trans., 2020,49(3):667-674. doi: 10.1039/C9DT04320A

    15. [15]

      Li K, Lian H Z, Han Y Q, Shang M M, Deun R V, Lin J. BaLu6(Si2O7)2(Si3O10): Ce3+, Tb3+: A novel blue-green emission phosphor via energy transfer for UV LEDs[J]. Dyes Pigment., 2017,139:701-707. doi: 10.1016/j.dyepig.2016.12.059

    16. [16]

      Xiao Y, Hao Z D, Zhang L L, Xiao W G, Wu D, Zhang X, Pan G H, Luo Y S, Zhang J H. Highly efficient green-emitting phosphors Ba2Y5B5O17 with low thermal quenching due to fast energy transfer from Ce3+ to Tb3+[J]. Inorg. Chem., 2017,56(8):4538-4544. doi: 10.1021/acs.inorgchem.7b00085

    17. [17]

      Li K, Shang M M, Zhang Y, Fan J, Lian H Z, Lin J. Photoluminescence properties of single-component white-emitting Ca9Bi (PO4)7: Ce3+, Tb3+, Mn2+ phosphors for UV LEDs[J]. J. Mater. Chem. C, 2015,3(27):7096-7104. doi: 10.1039/C5TC00927H

    18. [18]

      Deyneko D V, Nikiforov I V, Spassky D A, Dikhtyar Y Y, Aksenov S M, Stefanovich A Y, Lazoryak B I. Luminescence of Eu3+ as a probe for the determination of the local site symmetry in β-Ca3(PO4)2-related structures[J]. CrystEngComm, 2019,21(35):5235-5242. doi: 10.1039/C9CE00931K

    19. [19]

      Li K, Zhang Y, Li X J, Shang M M, Lian H Z, Lin J. Tunable blue-green emission and energy transfer properties in β-Ca3(PO4)2: Eu2+, Tb3+ phosphors with high quantum efficiencies for UV-LEDs[J]. Dalton Trans., 2015,44(10):4683-4692. doi: 10.1039/C4DT03720K

    20. [20]

      Wang J D, Shang M M, Cui M, Dang P P, Liu D J, Huang D Y, Lian H Z, Lin J. Realizing an impressive red-emitting Ca9MnNa (PO4)7 phosphor through a dual function based on disturbing structural confinement and energy transfer[J]. J. Mater. Chem. C, 2020,8(1):285-295. doi: 10.1039/C9TC05768D

    21. [21]

      Bu X Y, Liu Y G, Wang B C, Mi R Y, Wang Z Y, Huang Z H. Photoluminescent properties of single-phase white-light Ca8ZnGd (PO4)7: Eu2+, Mn2+ phosphor[J]. Chem. Phys. Lett., 2020,743137185. doi: 10.1016/j.cplett.2020.137185

    22. [22]

      Long J Q, Wang Y Z, Ma C Y, Yuan X Y, Dong W F, Ma R, Wen Z C, Du M M, Cao Y G. Photoluminescence tuning of Ca8-xSrxMgGd (PO4)7: Eu2+, yMn2+ phosphors for applications in white LEDs with excellent color rendering index[J]. RSC Adv., 2017,7(31):19223-19230. doi: 10.1039/C6RA28594E

    23. [23]

      Zheng Z, Tang W J. Tunable luminescence and energy transfer of Ce3+/Eu2+/Mn2+-tridoped Sr8MgLa (PO4)7 phosphor for white light LEDs[J]. J. Alloy. Compd., 2016,663:731-737. doi: 10.1016/j.jallcom.2015.12.184

    24. [24]

      Zhang Z W, Ren Y J, Liu L, Zhang J P, Peng Y S. Synthesis and luminescence of Eu3+-doped in triple phosphate Ca8MgBi (PO4)7 with whitlockite structure[J]. Luminescence, 2015,30:1190-1194. doi: 10.1002/bio.2878

    25. [25]

      Wen D W, Dong Z Y, Shi J X, Gong M, Wu M M. Standard white-emitting Ca8MgY (PO4)7: Eu2+, Mn2+ phosphor for white-light-emitting LEDs[J]. ECS J. Solid State Sci. Technol., 2013,2(9):178-185.

    26. [26]

      Pires A M, Davilos M R. Luminescence of europium(Ⅲ) and manganese(Ⅱ) in barium and zinc orthosilicate[J]. Chem. Mater., 2001,13:21-27. doi: 10.1021/cm000063g

    27. [27]

      Yang F, Ma H X, Liu Y F, Liu Q B, Yang Z P, Han Y. A new green luminescent material Ba3Bi (PO4)3: Tb3+[J]. Ceram. Int., 2013,39:2127-2130. doi: 10.1016/j.ceramint.2012.07.053

    28. [28]

      Liu C M, Hou D J, Yan J, Zhou L, Kuang X J, Liang H B, Huang Y, Zhang B B, Tao Y. Energy transfer and tunable luminescence of NaLa (PO3)4: Tb3+/Eu3+ under VUV and low-voltage electron beam excitation[J]. J. Phys. Chem. C, 2014,118(6):3220-3229. doi: 10.1021/jp410131q

    29. [29]

      Liu H K, Luo Y, Mao Z Y, Liao L B, Xia Z G. A novel single-composition trichromatic white-emitting Sr3.5Y6.5O2(PO4)1.5(SiO4)4.5: Ce3+/Tb3+/Mn2+ phosphor: Synthesis, luminescent properties and applications for white LEDs[J]. J. Mater. Chem. C, 2014,2:1619-1627. doi: 10.1039/c3tc32003k

    30. [30]

      Zhao M X, Zhao Z J, Yang L Q, Dong L L, Xia A Q, Chang S Y, Wei Y H, Liu Z P. The generation of energy transfer from Ce3+ to Eu3+ in LaPO 4:Ce3+/Tb3+/Eu3+ phosphors[J]. J. Lumin., 2018,194:297-302. doi: 10.1016/j.jlumin.2017.10.041

    31. [31]

      Shi Y R, Cheng P, Chen J, Tong Y P, Wang C. Color tunable emission via Ce3+-Tb3+ energy transfer in CaHfO3 phosphor[J]. J. Mater. Sci.: Mater. Electron., 2019,30(19):17798-17803. doi: 10.1007/s10854-019-02131-0

    32. [32]

      Blasse G. Energy transfer between inequivalent Eu ions[J]. J. Solid. State. Chem., 1986,2:207-211.

    33. [33]

      Dexter D L. A theory of sensitized luminescence in solids[J]. J. Chem. Phys., 1953,21:836-850. doi: 10.1063/1.1699044

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    3. [3]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    4. [4]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    7. [7]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    8. [8]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    11. [11]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    14. [14]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    19. [19]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    20. [20]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

Metrics
  • PDF Downloads(4)
  • Abstract views(499)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return