Effect of B2O3-Bi2O3-ZnO-Al2O3 glass additive on sintering condition, crystal structure, and dielectric properties of BaTiO3 ceramics
- Corresponding author: Sen WANG, wsenl@yeah.net
Citation: Qi YUAN, Gao-Bin LIU, Sen WANG. Effect of B2O3-Bi2O3-ZnO-Al2O3 glass additive on sintering condition, crystal structure, and dielectric properties of BaTiO3 ceramics[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 485-491. doi: 10.11862/CJIC.2023.014
Gotor F J, Perez-Maqueda L A, Criado J M. Synthesis of BaTiO3 by applying the sample controlled reaction temperature (SCRT) method to the thermal decomposition of barium titanyl oxalate[J]. J. Eur. Ceram. Soc., 2003,23(3):505-513. doi: 10.1016/S0955-2219(02)00099-7
ZHOU Z. Study on preparation and doping modification of barium titanate based ceramics. Guangzhou: Guangdong University of Technology, 2014: 3-11
Shaifudin M S, Ghazali M S M, Abdullah W R W, Lkhmal W M, Kassim S. Microstructure and electrical properties of low-voltage barium titanate doped zinc oxide varistor ceramics[J]. International Journal of Recent Technology and Engineering, 2019,8:2713-2718.
Glitzky C, Rabe T, Eberstein M, Schiller W A, Töpfer J, Barth S, Kipka A. LTCC-modules with integrated ferrite layers—Strategies for material development and Co-sintering[J]. J. Microelectron. Electron. Packag., 2009,6(1):49-53. doi: 10.4071/1551-4897-6.1.49
Valant M, Suvorov D, Pullar R C, Sarma K, Alford N M. A mechanism for low-temperature sintering[J]. J. Eur. Ceram. Soc., 2006,26(13):2777-2783. doi: 10.1016/j.jeurceramsoc.2005.06.026
Naghib-zadeh H, Glitzky C, Dörfel I, Rabe T. Low temperature sintering of barium titanate ceramics assisted by addition of lithium fluoridecontaining sintering additives[J]. J. Eur. Ceram. Soc., 2010,30(1):81-86. doi: 10.1016/j.jeurceramsoc.2009.07.005
Hsiang H I, Hsi C S, Huang C C, Fu S L. Sintering behavior and dielectric properties of BaTiO3 ceramics with glass addition for internal capacitor of LTCC[J]. J. Alloy. Compd., 2008,459(1/2):307-310.
Jeon H P, Lee S K, Kim S W, Choi D K. Effects of BaO-B2O3-SiO2 glass additive on densification and dielectric properties of BaTiO3 ceramics[J]. Mater. Chem. Phys., 2005,94(2/3):185-189.
Tian Y S, Gong Y S, Zhang Z L, Meng D W. Phase evolutions and electric properties of BaTiO3 ceramics by a low-temperature sintering process[J]. J. Mater. Sci.-Mater. Electron., 2014,25(12):5467-5474. doi: 10.1007/s10854-014-2330-3
Wang S, He H, Su H. Effect of Bi2O3 doping on the dielectric properties of medium-temperature sintering BaTiO3-based X8R ceramics[J]. J. Mater. Sci.-Mater. Electron., 2013,24(7):2385-2389. doi: 10.1007/s10854-013-1106-5
Sun C K, Wang X H, Ma C, Li L T. Low-temperature sintering barium titanate-based X8R ceramics with Nd2O3 dopant and ZnO-B2O3 flux agent[J]. J. Am. Ceram. Soc., 2009,92(7):1613-1616. doi: 10.1111/j.1551-2916.2009.03066.x
Fisher J G, Lee B K, Choi S Y, Wang S M, Kang S J L. Inhibition of abnormal grain growth in BaTiO3 by addition of Al2O3[J]. J. Eur. Ceram. Soc., 2006,26(9):1619-1628. doi: 10.1016/j.jeurceramsoc.2005.03.234
Chen Y, Ye H H, Wang X S, Li Y X, Yao X. Grain size effects on the electric and mechanical properties of submicro BaTiO3 ceramics[J]. J. Eur. Ceram. Soc., 2020,40(2):391-400. doi: 10.1016/j.jeurceramsoc.2019.09.033
Buscaglia V, Buscaglia M T, Canu G. BaTiO3-based ceramics: Fundamentals, properties and applications//Encyclopedia of materials: Technical ceramics and glasses: Vol. 3. Elsevier, 2021: 311-344
Nièpce J C, Pizzagalli L. Structure and phase transitions in nanocrystals//Bréchignac C, Houdy P, Lahmani M. Nanomaterials and nanochemistry. Berlin, Heidelberg: Springer, 2008: 35-54
Wang H X, Zhao P Y, Chen L L, Li L T, Wang X H. Energy storage properties of 0.87BaTiO3-0.13Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3 multilayer ceramic capacitors with thin dielectric layers[J]. J. Adv. Ceram., 2020,9(3):292-302.
Wei M, Zhang J H, Wu K T, Chen H W, Yang C R. Effect of BiMO3 (M=Al, In, Y, Sm, Nd, and La) doping on the dielectric properties of BaTiO3 ceramics[J]. Ceram. Int., 2017,43(13):9593-9599. doi: 10.1016/j.ceramint.2017.03.139
Gao W L, Deng H M, Huang D J, Yang P X, Chu J H. Microstructure and optical properties of Zn-doped BaTiO3 thin films[J]. J. Phys.: Conf. Ser., 2011,276(1)012163.
Wang J, Huang Y F, Guo W L, Xing Z G, Wang H D, Lu Z L, Zhang Z N. First-principles calculations of electronic and optical properties of A and B site substituted BaTiO3[J]. Vacuum, 2021,193110530. doi: 10.1016/j.vacuum.2021.110530
Niu X, Jian X D, Chen X Y, Li H X, Liang W, Yao Y B, Tao T, Liang B, Lu S G. Enhanced electrocaloric effect at room temperature in Mn2+ doped lead-free (BaSr)TiO3 ceramics via a direct measurement[J]. J. Adv. Ceram., 2021,10(3):482-492. doi: 10.1007/s40145-020-0450-1
Feteira A, Sarma K, Alford N M N, Reaney I M, Sinclair D C. Microwave dielectric properties of gallium-doped hexagonal barium titanate ceramics[J]. J. Am. Ceram. Soc., 2003,86(3):511-513. doi: 10.1111/j.1151-2916.2003.tb03330.x
Zhuo Q Z, Xiao P Z. Reduction of Ti4+ to Ti3+ in boron-doped BaTiO3 at very low temperature[J]. J. Am. Ceram. Soc., 2013,96(11):3504-3510. doi: 10.1111/jace.12512
Buscaglia V, Buscaglia M T, Viviani M, Mitoseriu L, Nanni P, Trefiletti V, Piaggio P, Gregora I, Ostapchuk T, Pokorný J, Petzelt J. Grain size and grain boundary-related effects on the properties of nanocrystalline barium titanate ceramics[J]. J. Eur. Ceram. Soc., 2006,26(14):2889-2898. doi: 10.1016/j.jeurceramsoc.2006.02.005
El-Shaarawy M G, Rashad M M, Shash N M, Maklad M H, Afifi A F. Structural, AC conductivity, dielectric behavior and magnetic properties of Mg-substituted LiFe5O8 powders synthesized by sol-gel autocombustion method[J]. J. Mater. Sci.-Mater. Electron., 2015,26(8):6040-6050. doi: 10.1007/s10854-015-3181-2
Chiang C C, Wang S F, Wang Y R, Wei W C J. Densification and microwave dielectric properties of CaO-B2O3-SiO2 system glassceramics[J]. Ceram. Int., 2008,34(3):599-604. doi: 10.1016/j.ceramint.2006.12.008
Wang F, Lou Y H, Li Z J, Lei W, Lu Y, Dong Z W, Lu W Z. Improved flexural strength and dielectric loss in Al2O 3-based LTCC with La2O 3-CaO-B2O3-SiO2 glass[J]. Ceram. Int., 2021,47(7):9955-9960. doi: 10.1016/j.ceramint.2020.12.140
Cai W, Fu C L, Chen G, Gao R L, Deng X L. Dielectric and ferroelectric properties of xBaZr0.52Ti0.48O3-(1-x)BiFeO3 solid solution ceramics[J]. J. Mater. Sci.-Mater. Electron., 2015,26(1):322-330. doi: 10.1007/s10854-014-2403-3
Arshad M, Du H, Javed M S, Maqsood A, Ashraf I, Hussain S, Ma W, Ran H. Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics[J]. Ceram. Int., 2020,46(2):2238-2246. doi: 10.1016/j.ceramint.2019.09.208
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Kunyao Peng , Xianbin Wang , Xingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
εr-T curves: (a) 850℃, (b) 900 ℃, (c) 950 ℃; tan δ-T curves: (d) 850℃, (e) 900 ℃, (f) 950 ℃; Inset: the corresponding enlarged diagrams
Inset: the corresponding enlarged diagrams