Citation: Ying-Min GUO, Hui ZHAO, Xue-Dong MA, Wei WANG, Yu-Kun MA, Cun-She ZHANG. Preparation and electrochemical properties of phenanthroline copper coordination Schiff base conducting polymers[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 395-405. doi: 10.11862/CJIC.2023.012 shu

Preparation and electrochemical properties of phenanthroline copper coordination Schiff base conducting polymers

  • Corresponding author: Wei WANG, wwchem@chd.edu.cn
  • Received Date: 14 July 2022
    Revised Date: 19 December 2022

Figures(10)

  • Preparation and electrochemical properties of Schiff base OTTP prepared from o-toluidine and p-benzal-dehyde polymers doped with various proportions of phenanthroline copper complexes. The copper coordination poly-mer [Cu(Phen)Cl2]X-OTTP (X was the molar ratio of Schiff base to phenanthroline copper coordination complex, X=1, 0.8, 0.6, 0.4, 0.2) of Schiff base phenanthroline was synthesized by doping different proportions of phenanthroline copper complexes in Schiff base. The morphology and structure of the products were investigated by scanning elec-tron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR), and the electrochemical performance of the electrode materials [Cu(Phen)Cl2]X-OTTP were analyzed by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectrum (EIS). The results exhibited that the morphology of the polymer Schiff base changed after doping with phenanthroline copper complexes. After doping, the Schiff base was scaly, with more holes on the surface and the layered structure was destroyed. The matrix π-π stacking was affected. In 6 mol·L-1 KOH electrolyte three-electrode system, [Cu(Phen)Cl2]0.4-OTTP had a high specific capacity of 278 mAh·g-1 at the current density of 0.5 A·g-1. The assembled supercapacitor [Cu(Phen)Cl2]0.4-OTTP//AC (AC=activated carbon) had a power density of 276.99 W·kg-1 at the energy density of 26.16 Wh·kg-1, and kept original specific capacity of 97.13% after 10 000 GCD cycles at current density of 10 A·g-1.
  • 加载中
    1. [1]

      Bi Z H, Kong Q Q, Cao Y F, Sun G H, Su F Y, Wei X X, Li X M, Ahmad A, Xie L J. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review[J]. J. Mater. Chem. A, 2019,7(27):16028-16045. doi: 10.1039/C9TA04436A

    2. [2]

      Noori A, El-Kady M F, Rahmanifar M S, Kaner R B, Mousavi M F. Towards establishing standard performance metrics for batteries, supercapacitors and beyond[J]. Chem. Soc. Rev., 2019,48(5):1272-1341. doi: 10.1039/C8CS00581H

    3. [3]

      Fleischmann S, Mitchell J B, Wang R, Zhan C, Jiang D E, Presser V, Augustyn V. Pseudocapacitance: From fundamental understanding to high power energy storage materials[J]. Chem. Rev., 2020,120(14):6738-6782. doi: 10.1021/acs.chemrev.0c00170

    4. [4]

      Kumar K S, Choudhary N, Jung Y, Thomas J. Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications[J]. ACS Energy Lett., 2018,3(2):482-495. doi: 10.1021/acsenergylett.7b01169

    5. [5]

      Raza W, Ali F, Raza N, Luo Y W, Kim K H, Yang J H, Kumar S, Mehmood A, Kwon E. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018,52:441-473. doi: 10.1016/j.nanoen.2018.08.013

    6. [6]

      Wang H Y, Xu C M, Chen Y Q, Wang Y. MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density[J]. Energy Storage Mater., 2017,8:127-133. doi: 10.1016/j.ensm.2017.05.007

    7. [7]

      Hosaka T, Kubota K, Hameed A S, Komaba S. Research development on K-ion batteries[J]. Chem. Rev., 2020,120(14):6358-6466. doi: 10.1021/acs.chemrev.9b00463

    8. [8]

      Poonam , Sharma K, Arora A, Tripathi S K. Review of supercapacitors: Materials and devices[J]. J. Energy Storage, 2019,21:801-825. doi: 10.1016/j.est.2019.01.010

    9. [9]

      Zhang S W, Yin B S, Liu X X, Gu D M, Gong H, Wang Z B. A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches[J]. Nano Energy, 2019,59:41-49. doi: 10.1016/j.nanoen.2019.02.001

    10. [10]

      Liu S, Kang L, Zhang J, Jung E, Lee S, Jun S C. Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors[J]. Energy Storage Mater., 2020,32:167-177. doi: 10.1016/j.ensm.2020.07.017

    11. [11]

      Liu X, Hamon J R. Recent developments in penta-, hexa-and hepta-dentate Schiff base ligands and their metal complexes[J]. Coord. Chem. Rev., 2019,389:94-118. doi: 10.1016/j.ccr.2019.03.010

    12. [12]

      Li X P, Li J L, Kang F Y. Enhanced electrochemical performance of salen-type transition metal polymer with electron-donating substituents[J]. Ionics, 2019,25(3):1045-1055. doi: 10.1007/s11581-018-2819-5

    13. [13]

      Segura J L, Mancheño M J, Zamora F. Covalent organic frameworks based on Schiff-base chemistry: Synthesis, properties and potential applications[J]. Chem. Soc. Rev., 2016,45(20):5635-5671. doi: 10.1039/C5CS00878F

    14. [14]

      Su S J, Lai Q X, Liang Y Y. Schiff-base polymer derived nitrogen-rich microporous carbon spheres synthesized by molten-salt route for high-performance supercapacitors[J]. RSC Adv., 2015,5(75):60956-60961. doi: 10.1039/C5RA07628E

    15. [15]

      Zhao J J, Niu Y Z, Ren B, Chen H, Zhang S X, Jin J, Zhang Y. Synthesis of Schiff base functionalized superparamagnetic Fe3O4 composites for effective removal of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution[J]. Chem. Eng. J., 2018,347:574-584. doi: 10.1016/j.cej.2018.04.151

    16. [16]

      RONG H R, WANG X M, MA Y W, GAO G X, SU H Q, LAI L F, LIU Q. Three-dimensional cobalt-based MOF[KCo7(OH)3(ip)6(H2O)4]·12H2O as a high-capacity electrode material for supercapacitors[J]. Chinese J. Inorg. Chem., 2021,37(2):206-212.  

    17. [17]

      Huang M, Li F, Dong F, Zhang Y X, Zhang L L. MnO2-based nano-structures for high-performance supercapacitors[J]. J. Mater. Chem. A, 2015,3(43):21380-21423. doi: 10.1039/C5TA05523G

    18. [18]

      DONG Y G, LI S J, LUO Y, YAO Y, LU C L, YANG J H. Electrochemical performance of high performance NiCoP-based supercapacitors[J]. Chinese J. Inorg. Chem., 2021,37(6):1062-1070.  

    19. [19]

      Zhu D Z, Jiang J X, Sun D M, Qian X Y, Wang Y W, Li L C, Wang Z W, Chai X L, Gan L H, Liu M X. A general strategy to synthesize high-level N-doped porous carbons via Schiff-base chemistry for supercapacitors[J]. J. Mater. Chem. A, 2018,6(26):12334-12343. doi: 10.1039/C8TA02341G

    20. [20]

      Wang J, Yao H Y, Du C Y, Guan S W. Polyimide Schiff base as a high-performance anode material for lithium-ion batteries[J]. J. Power Sources, 2021,482228931. doi: 10.1016/j.jpowsour.2020.228931

    21. [21]

      Ye H J, Jiang F Q, Li H Q, Xu Z, Yin J, Zhu H. Facile synthesis of conjugated polymeric Schiff base as negative electrodes for lithium ion batteries[J]. Electrochim. Acta, 2017,253:319-323. doi: 10.1016/j.electacta.2017.09.062

    22. [22]

      HUANG Y J. Synthesis and characterization of transition metal complexes constructed from phenanthroline derivatives and their catalytic degradation of dyes. Zhenjiang: Jiangsu University, 2012.

    23. [23]

      Xu H, Cao Y F, Li Y, Cao P, Liu D D, Zhang Y Y, Li Q W. High-loading Co-doped NiO nanosheets on carbon-welded carbon nanotube framework enabling rapid charge kinetic for enhanced supercapacitor performance[J]. J. Energy Chem., 2020,50:240-247. doi: 10.1016/j.jechem.2020.03.023

    24. [24]

      Zan G T, Wu T, Hu P, Zhou S L, Xu S M, Chen J, Cui Y, Wu Q S. An approaching-theoretical-capacity anode material for aqueous battery: Hollow hexagonal prism Bi2O3 assembled by nanoparticles[J]. Energy Storage Mater., 2020,28:82-90. doi: 10.1016/j.ensm.2020.02.027

    25. [25]

      Zhou Y F, Xu Y X, Lu B, Guo J Y, Zhang S Y, Lu Y. Schiff Base-functionalized cobalt-based metal organic framework microspheres with a sea urchin-like structure for supercapacitor electrode material[J]. J. Electroanal. Chem., 2019,847113248. doi: 10.1016/j.jelechem.2019.113248

    26. [26]

      Zhang K, Kirlikovali K O, Varma R S, Jin Z, Jang H W, Farha O K, Shokouhimehr M. Covalent organic frameworks: emerging organic solid materials for energy and electrochemical applications[J]. ACS Appl. Mater. Interfaces, 2020,12(25):27821-27852. doi: 10.1021/acsami.0c06267

    27. [27]

      Wang W X, Lu Y, Zhao M L, Luo R J, Yang Y, Peng T, Yan H L, Liu X M, Luo Y S. Controllable tuning of cobalt nickel-layered double hydroxide arrays as multifunctional electrodes for flexible supercapattery device and oxygen evolution reaction[J]. ACS Nano, 2019,13(10):12206-12218. doi: 10.1021/acsnano.9b06910

    28. [28]

      Schlee P, Hosseinaei O, O'Keefe C A, Mostazo-López M J, Cazorla-Amorós D, Herou S, Tomani P, Grey C P, Titirici M M. Hardwood versus softwood Kraft lignin-precursor-product relationships in the manufacture of porous carbon nanofibers for supercapacitors[J]. J. Mater. Chem. A, 2020,8(44):23543-23554. doi: 10.1039/D0TA09093J

  • 加载中
    1. [1]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    5. [5]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    6. [6]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    7. [7]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    8. [8]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    11. [11]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    19. [19]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    20. [20]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

Metrics
  • PDF Downloads(4)
  • Abstract views(889)
  • HTML views(160)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return