Citation: Xian-Hui QI, Hong-Gang ZHAO, Yu-Hua MA, Zhuan-Hu WANG, Yun-Peng LI, Yu-Chen LI, Jia-Wen LI, Chen-Xiang YAN. Highly efficient BiOBr/red phosphorus heterojunction photocatalyst for Cr(Ⅵ) photoreduction[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 563-574. doi: 10.11862/CJIC.2023.011 shu

Highly efficient BiOBr/red phosphorus heterojunction photocatalyst for Cr(Ⅵ) photoreduction

Figures(8)

  • Herein, hydrothermally treated red phosphorus (HRP) was combined with bismuth bromide oxide (BiOBr) to construct BiOBr/HRP heterostructure composite. Regulating and optimizing the composition ratio, 7%BiOBr/HRP (The mass fraction of BiOBr in the composite was 7%) exhibited the highest photocatalytic activity, the rate constant for visible light reduction of Cr(Ⅵ) was 0.188 min-1, which was five times higher than that of pure HRP (0.037 6 min-1). The heterojunction composite constructed by introducing wide band gap BiOBr into narrow band gap HRP expanded the visible spectral absorption range, enhanced the light absorption, and accelerated the separation of photo-generated electrons and holes.
  • 加载中
    1. [1]

      Wei K X, Faraj Y, Yao G, Xie R Z, Lai B. Strategies for improving perovskite photocatalysts reactivity for organic pollutants degradation: A review on recent progress[J]. Chem. Eng. J., 2021,414128783. doi: 10.1016/j.cej.2021.128783

    2. [2]

      Ansari S A, Khan Z, Ansari M O, Cho M H. Earth-abundant stable elemental semiconductor red phosphorus-based hybrids for environmental remediation and energy storage applications[J]. RSC Adv., 2016,6(50):44616-44629. doi: 10.1039/C6RA06145A

    3. [3]

      Wu C X, Jing L, Deng J G, Liu Y X, Li S, Lv S J, Sun Y J, Zhang Q C, Dai H X. Elemental red phosphorus-based photocatalysts for environmental remediation: A review[J]. Chemosphere, 2021,274129793. doi: 10.1016/j.chemosphere.2021.129793

    4. [4]

      Li S T, Wang P F, Zhao H X, Wang R D, Jing R S, Meng Z L, Li W Z, Zhang Z L, Liu Y Y, Zhang Q, Li Z. Fabrication of black phosphorus nanosheets/BiOBr visible light photocatalysts via the co-precipitation method[J]. Colloids Surf. A, 2021,612125967. doi: 10.1016/j.colsurfa.2020.125967

    5. [5]

      Wang Z Z, Wang K, Li Y, Jiang L S, Zhang G K. Novel BiSbO4/BiOBr nanoarchitecture with enhanced visible-light driven photocatalytic performance: Oxygen-induced pathway of activation and mechanism unveiling[J]. Appl. Surf. Sci., 2019,498143850. doi: 10.1016/j.apsusc.2019.143850

    6. [6]

      Zhu Y K, Ren J, Zhang X L, Yang D J. Elemental red phosphorus-based materials for photocatalytic water purification and hydrogen production[J]. Nanoscale, 2020,12(25):13297-13310. doi: 10.1039/D0NR01748E

    7. [7]

      Qi L L, Dong K Y, Zeng T, Liu J Y, Fan J, Hu X Y, Jia W L, Liu E Z. Three-dimensional red phosphorus: A promising photocatalyst with excellent adsorption and reduction performance[J]. Catal. Today, 2018,314:42-51. doi: 10.1016/j.cattod.2018.01.002

    8. [8]

      Guo C C, Du H, Ma Y H, Qi K Z, Zhu E Q, Su Z, Huojiaaihemaiti M, Wang X. Visible-light photocatalytic activity enhancement of red phosphorus dispersed on the exfoliated kaolin for pollutant degradation and hydrogen evolution[J]. J. Colloid Interface Sci., 2021,585:167-177. doi: 10.1016/j.jcis.2020.11.055

    9. [9]

      Yuan Y P, Cao S W, Liao Y S, Yin L S, Xue C. Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production[J]. Appl. Catal. B-Environ., 2013,140-141:164-168. doi: 10.1016/j.apcatb.2013.04.006

    10. [10]

      Zhu Y K, Li J Z, Dong C L, Ren J, Huang Y C, Zhao D M, Cai R S, Wei D X, Yang X F, Lv C X, Theis W G, Bu Y Y, Han W, Shen S H, Yang D J. Red phosphorus decorated and doped TiO2 nanofibers for efficient photocatalytic hydrogen evolution from pure water[J]. Appl. Catal. B-Environ., 2019,255117764. doi: 10.1016/j.apcatb.2019.117764

    11. [11]

      Zhu E Q, Ma Y H, Du H, Qi K Z, Ainiwa M, Su Z. Three-dimensional bismuth oxide/red phosphorus heterojunction composite with enhanced photoreduction activity[J]. Appl. Surf. Sci., 2020,528146932. doi: 10.1016/j.apsusc.2020.146932

    12. [12]

      Wang J, Pi M Y, Zhang D K, Chen S J. The visible-light photocatalytic activity for enhancing RhB degradation and hydrogen evolution from SrTiO3 nanoparticles decorated red phosphorus nanorods as photocatalysts[J]. J. Phys. D: Appl. Phys., 2020,53(8)085501. doi: 10.1088/1361-6463/ab58df

    13. [13]

      Zong S K, Wei W, Cui H L, Jiang Z F, Lü X M, Zhang M, Xie J M. A novel synthesis of P/BiPO4 nanocomposites with enhanced visible-light photocatalysis[J]. Mater. Res. Innovations, 2015,19(5):361-367. doi: 10.1179/1433075X15Y.0000000013

    14. [14]

      Majhi D, Das K, Mishra A, Dhiman R, Mishra B G. One pot synthesis of CdS/BiOBr/Bi2O2CO3: A novel ternary double Z-scheme heterostructure photocatalyst for efficient degradation of atrazine[J]. Appl. Catal. B-Environ., 2020,260118222. doi: 10.1016/j.apcatb.2019.118222

    15. [15]

      Imam S S, Adnan R, Mohd Kaus N H. Immobilization of BiOBr into cellulose acetate matrix as hybrid film photocatalyst for facile and multicycle degradation of ciprofloxacin[J]. J. Alloy. Compd., 2020,843155990. doi: 10.1016/j.jallcom.2020.155990

    16. [16]

      Gao Z Y, Yao B H, Xu T T, Ma M M. Effect and study of reducing agent NaBH4 on Bi/BiOBr/CdS photocatalyst[J]. Mater. Lett., 2020,259126874. doi: 10.1016/j.matlet.2019.126874

    17. [17]

      Mao W T, Bao K Y, Cao F P, Chen B K, Liu G Y, Wang W B, Li B B. Synthesis of a CoTiO3/BiOBr heterojunction composite with enhanced photocatalytic performance[J]. Ceram. Int., 2017,43(3):3363-3368. doi: 10.1016/j.ceramint.2016.11.180

    18. [18]

      Ren X Z, Wu K, Qin Z G, Zhao X C, Yang H. The construction of type Ⅱ heterojunction of Bi2WO6/BiOBr photocatalyst with improved photocatalytic performance[J]. J. Alloy. Compd., 2019,788:102-109. doi: 10.1016/j.jallcom.2019.02.211

    19. [19]

      Zhang J L, Zhang L S, Shen X F, Xu P F, Liu J S. Synthesis of BiO-Br/WO3 p-n heterojunctions with enhanced visible light photocatalytic activity[J]. CrystEngComm, 2016,18(21):3856-3865. doi: 10.1039/C6CE00824K

    20. [20]

      Bai Y, Shi X, Wang P Q, Wnag L, Zhang K, Zhou Y, Xie H Q, Wang J N, Ye L Q. BiOBrxI1-x/BiOBr heterostructure engineering for efficient molecular oxygen activation[J]. Chem. Eng. J., 2019,356:34-42. doi: 10.1016/j.cej.2018.09.006

    21. [21]

      Heidari S, Haghighi M, Shabani M. Sunlight-activated BiOCl/BiOBr-Bi24O31Br10 photocatalyst for the removal of pharmaceutical compounds[J]. J. Cleaner Prod., 2020,259120679. doi: 10.1016/j.jclepro.2020.120679

    22. [22]

      Zou X J, Dong Y Y, Zhang X D, Cui Y B, Ou X X, Qi X H. The highly enhanced visible light photocatalytic degradation of gaseous o-dichlorobenzene through fabricating like-flowers BiPO4/BiOBr p-n heterojunction composites[J]. Appl. Surf. Sci., 2017,391:525-534. doi: 10.1016/j.apsusc.2016.06.003

    23. [23]

      Kim S R, Jo W K. Boosted photocatalytic decomposition of nocuous organic gases over tricomposites of N-doped carbon quantum dots, ZnFe2O 4, and BiOBr with different junctions[J]. J. Hazard. Mater., 2019,380120866. doi: 10.1016/j.jhazmat.2019.120866

    24. [24]

      Cao Q W, Cui X, Zheng Y F, Song X C. A novel CdWO4/BiOBr p-n heterojunction as visible light photocatalyst[J]. J. Alloy. Compd., 2016,670:12-17. doi: 10.1016/j.jallcom.2016.02.061

    25. [25]

      Fu S, Yuan W, Liu X M, Yan Y H, Liu H P, Li L, Zhao F Y, Zhou J G. A novel 0D/2D WS2/BiOBr heterostructure with rich oxygen vacancies for enhanced broad-spectrum photocatalytic performance[J]. J. Colloid Interface Sci., 2020,569:150-163. doi: 10.1016/j.jcis.2020.02.077

    26. [26]

      Guo Y X, Huang H W, He Y, Tian N, Zhang T R, Chu P K, An Q, Zhang Y H. In situ crystallization for fabrication of a core-satellite structured BiOBr-CdS heterostructure with excellent visible-light-responsive photoreactivity[J]. Nanoscale, 2015,7(27):11702-11711. doi: 10.1039/C5NR02246K

    27. [27]

      Han A J, Zhang H W, Lu D, Sun J L, Chuah G K, Jaenicke S. Efficient photodegradation of chlorophenols by BiOBr/NaBiO3 heterojunctioned composites under visible light[J]. J. Hazard. Mater., 2018,341:83-92. doi: 10.1016/j.jhazmat.2017.07.031

    28. [28]

      Hu T P, Yang Y, Dai K, Zhang J F, Liang C H. A novel Z-scheme Bi2MoO6/BiOBr photocatalyst for enhanced photocatalytic activity under visible light irradiation[J]. Appl. Surf. Sci., 2018,456:473-481. doi: 10.1016/j.apsusc.2018.06.186

    29. [29]

      Zhu E Q, Zhao S X, Du H, Ma Y H, Qi K Z, Guo C C, Su Z, Wang X, Wu Z D, Wang Z H. Construction of Bi2Fe4O9/red phosphorus heterojunction for rapid and efficient photoreduction of Cr(Ⅵ)[J]. J. Am. Ceram. Soc., 2021,104(10):5411-5423. doi: 10.1111/jace.17782

    30. [30]

      Chen X, Zhang X, Li Y H, Qi M Y, Li J Y, Tang Z R, Zhou Z, Xu Y J. Transition metal doping BiOBr nanosheets with oxygen vacancy and exposed {102} facets for visible light nitrogen fixation[J]. Appl. Catal. B-Environ., 2021,281119516. doi: 10.1016/j.apcatb.2020.119516

    31. [31]

      Kannan V, Arredondo M, Johann F, Hesse D, Labrugere C, Maglione M, Vrejoiu I. Strain dependent microstructural modifications of BiCrO3 epitaxial thin films[J]. Thin Solid Films, 2013,545:130-139. doi: 10.1016/j.tsf.2013.07.053

    32. [32]

      Gao M C, Zhang D F, Pu X P, Li H, Lv D D, Zhang B B, Shao X. Facile hydrothermal synthesis of Bi/BiOBr composites with enhanced visible-light photocatalytic activities for the degradation of rhodamine B[J]. Sep. Purif. Technol., 2015,154:211-216. doi: 10.1016/j.seppur.2015.09.063

    33. [33]

      Basaleh A, Ismail A A, Mohamed R M. Novel visible light heterojunction CdS/Gd2O 3 nanocomposites photocatalysts for Cr(Ⅵ) photoreduction[J]. J. Alloy. Compd., 2022,927166988. doi: 10.1016/j.jallcom.2022.166988

    34. [34]

      Bao Y C, Chen K Z. Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N 4 photocatalyst: Synthesis, characterization, visible light photocatalytic activity and mechanism[J]. Appl. Surf. Sci., 2018,437:51-61. doi: 10.1016/j.apsusc.2017.12.075

    35. [35]

      CHEN Y S, ZHENG J F, ZHU S L, XIONG M Y, NIE L H. One-step hydrothermal preparation and performance of BiOBr/BiPO4 p-n heterojunction photocatalyst[J]. Chinese J. Inorg. Chem., 2021,37(10):1828-1838. doi: 10.11862/CJIC.2021.213

    36. [36]

      An W J, Cui W Q, Liang Y H, Hu J S, Liu L. Surface decoration of BiPO 4 with BiOBr nanoflakes to build heterostructure photocatalysts with enhanced photocatalytic activity[J]. Appl. Surf. Sci., 2015,351:1131-1139. doi: 10.1016/j.apsusc.2015.06.098

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    3. [3]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    4. [4]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    5. [5]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    6. [6]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    10. [10]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    11. [11]

      Zhongsen WangLijun QiuYunhua HuangMeng ZhangXi CaiFanyu WangYang LinYanbiao ShiXiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195

    12. [12]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    13. [13]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    14. [14]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    15. [15]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    16. [16]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    17. [17]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    18. [18]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    19. [19]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(1)
  • Abstract views(843)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return