Citation: Zeng-Bo KE, Xin-Hui FAN, You-Ying DI, Feng-Ying CHEN, Li-Jun ZHANG, Ke YANG, Bing LI. Crystal structure, Hirschfeld surface analysis and solution chemical properties of lactate complex (NH4)2[Sr(C3H5O3)4][J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 521-532. doi: 10.11862/CJIC.2023.010 shu

Crystal structure, Hirschfeld surface analysis and solution chemical properties of lactate complex (NH4)2[Sr(C3H5O3)4]

Figures(10)

  • The anhydrous lactate complex (NH4)2[Sr(C3H5O3)4] was synthesized. The crystal structure was characterized by an X-ray single crystal diffractometer, and its composition, spatial structure, and coordination mode were determined. The Hirshfeld surface and 2D fingerprint plot of the complex were drawn, which provided reliable support for revealing the intermolecular interaction and revealed that the complex has many coordination sites and strong coordination activity. The crystal data were used to calculate the complex's lattice energy and its common anion's molar volume. The lattice energy of the complex was calculated to be 2742.9 kJ·mol-1. The enthalpy of dissolution of the complex in ultra-pure water as solvent at 298 K was measured by an isoperibol solution-reaction calorimeter. According to Pitzer's electrolyte solution theory, the infinite dilution molar dissolution enthalpy and Pitzer's parameters of the complex were obtained at 298 K. The complex's infinite dilution molar enthalpy of dissolution (ΔsHm) was determined to be (114.01±0.04) kJ·mol-1. The apparent relative molar enthalpy ΦL of the complex and the relative partial molar enthalpies (L1 and L2) of solute and solvent at different concentrations were calculated. Finally, the thermochemical cycle was designed according to the lattice potential energy and the infinite dilution molar dissolution enthalpy of the complex, and the hydration enthalpies of the complex and its D/L-lactate ion were calculated. Thermogravimetry and derivative thermogravimetry curves further revealed the structure of the complex. CCDC: 2099796.
  • 加载中
    1. [1]

      Zhai S X, Liu Q Y, Zhao Y L, Sun H, Yang B, Weng Y X. A review: Research progress in modification of poly (lactic acid) by lignin and cellulose[J]. Polymers, 2021,13(5):776-791. doi: 10.3390/polym13050776

    2. [2]

      Siakeng R, Jawaid M, Ariffin H, Sapuan S M, Asim M, Saba N. Natural fiber reinforced polylactic acid composites: A review[J]. Polym. Compos., 2019,40(2):446-463. doi: 10.1002/pc.24747

    3. [3]

      Carlotti S J, Giani-Beaune O, Schué F. Characterization and mechani-cal properties of water-soluble poly (vinyl alcohol) grafted with lactic acid and glycolic acid[J]. J. Appl. Polym. Sci., 2001,80(2):142-147. doi: 10.1002/1097-4628(20010411)80:2<142::AID-APP1082>3.0.CO;2-4

    4. [4]

      Cao X J, Lee H J, Yun H S, Koo Y M. Crystallization and dissolution behavior of L (+) calcium and zinc lactate in ethanol-water solvent[J]. Korean J. Chem. Eng., 2002,19(2):301-304. doi: 10.1007/BF02698418

    5. [5]

      Duan C L, Song J L, Wang B Y, Li L, Wang R F, Zhang B W. Lactic acid assisted solvothermal synthesis of BiOClxI1-x solid solutions as excellent visible light photocatalysts[J]. Chem. Res. Chin. Univ., 2019,35(2):277-284. doi: 10.1007/s40242-019-8274-7

    6. [6]

      Womersley R A. Metabolic effects of prolonged intravenous adminis-tration of magnesium lactate to the normal human[J]. J. Physiol., 1958,143(2):300-306. doi: 10.1113/jphysiol.1958.sp006060

    7. [7]

      Gu L Q, Qiu J H, Sakai E. Effect of DOPO-containing flame retardants on poly (lactic acid): Non-flammability, mechanical properties and thermal behaviors[J]. Chem. Res. Chin. Univ., 2017,33(1):143-149. doi: 10.1007/s40242-017-6196-9

    8. [8]

      Porciani P F, Grandini S, Chazine M. The effect of zinc lactate and magnolia bark extract added tablets on volatile sulfur-containing compounds in the oral cavity[J]. J. Clin. Dent., 2014,25(3):53-56.

    9. [9]

      Cao X J, Lee H J, Yun H S, Koo Y M. Solubilities of calcium and zinc lactate in water and water-ethanol mixture[J]. Korean J. Chem. Eng., 2001,18(1):133-135. doi: 10.1007/BF02707210

    10. [10]

      Štejfa V, Rohlíček J, Červinka C. Phase behaviour and heat capacities of selected 1-ethyl-3-methylimidazolium-based ionic liquids Ⅱ[J]. J. Chem. Thermodyn., 2021,160106392. doi: 10.1016/j.jct.2021.106392

    11. [11]

      Xu D, Di Y Y, Kong Y X, Dou J M. Crystal structure and thermo-chemical properties of 2-pyrazine carboxylate lithium monohydrate[Li (pyza)(H2O)]n(s)(pyza=2-pyrazine carboxylate)[J]. Chem. Res. Chin. Univ., 2015,31(2):253-260. doi: 10.1007/s40242-015-4438-2

    12. [12]

      Guo J J, Huang J, Song J R, Miao K H, Cao W L. Three new compounds based on 4, 4'-azo-1, 2, 4-triazol-5-one: Synthesis, crystal structure and thermal properties[J]. Chem. Res. Chin. Univ., 2016,32(5):812-817. doi: 10.1007/s40242-016-6114-6

    13. [13]

      Zhang Y H, Di Y Y, Tan Z C, Dou J M. Synthesis, crystal structure and thermochemistry of the coordination compound of pyridine-2, 6-dicarboxylic acid with barium ion[J]. Thermochim. Acta, 2014,575:173-178. doi: 10.1016/j.tca.2013.10.034

    14. [14]

      Di Y Y, Chen J T, Tan Z C. Low-temperature heat capacities and standard molar enthalpy of formation of the solid-state coordination compound trans-Cu (Ala)2(s)(Ala=L-α-alanine)[J]. Thermochim. Acta, 2008,471(1):70-73.

    15. [15]

      Spackman P R, Turner M J, McKinnon J J, Wolff S K, Grimwood D J, Jayatilaka D, Spackman M A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals[J]. J. Appl. Crystallogr., 2021,54(3):1006-1011. doi: 10.1107/S1600576721002910

    16. [16]

      Spackman M A, Jayatilaka D. Hirshfeld surface analysis[J]. CrystEngComm, 2009,11(1):19-32. doi: 10.1039/B818330A

    17. [17]

      Yu H G, Liu Y, Tan Z C, Dong J X, Zou T J, Huang X M, Qu S S. A solution-reaction isoperibol calorimeter and standard molar enthalpies of formation of Ln (hq)2Ac (Ln=La, Pr)[J]. Thermochim. Acta, 2003,401(2):217-224. doi: 10.1016/S0040-6031(02)00566-X

    18. [18]

      Di Y Y, Tan Z C, Zhang G Q, Chen S P, Liu Y, Sun L X. Low-temperature heat capacity and standard molar enthalpy of formation of the complex Zn (Thr) SO4·H2O (s)[J]. Thermochim. Acta, 2003,400(1):43-49.

    19. [19]

      Jenkins H D B, Tudela D, Glasser L. Lattice potential energy estimation for complex ionic salts from density measurements[J]. Inorg. Chem., 2002,41(9):2364-2367. doi: 10.1021/ic011216k

    20. [20]

      Glasser L, Jenkins H D B. Internally consistent ion volumes and their application in volume-based thermodynamics[J]. Inorg. Chem., 2008,47(14):6195-6202. doi: 10.1021/ic702399u

    21. [21]

      Liu Y P, Di Y Y, He D H, Zhou Q, Dou J M. Crystal structures, lat-tice potential energies, and thermochemical properties of crystalline compounds (1-CnH2n+1NH3)2ZnCl4(s)(n=8, 10, 12, and 13)[J]. Inorg. Chem., 2011,50(21):10755-10764. doi: 10.1021/ic2012974

    22. [22]

      Zhang L J, Tan Z C, Chen J T, Di Y Y. Crystal structures and thermo-chemical properties of n-nonylammonium dihydrogen phosphate C9H19NH3·H2PO4(s) and n-octylammonium dihydrogen phosphate C8H17NH3·H2PO4(s)[J]. J. Chem. Eng. Data, 2011,56(12):4491-4498. doi: 10.1021/je200352g

    23. [23]

      Yang J Z, Pitzer K S. Thermodynamics of electrolyte mixtures. Activity and osmotic coefficients consistent with the higher-order limiting law for symmetrical mixing[J]. J. Solut. Chem., 1988,17(10):909-924. doi: 10.1007/BF00649736

    24. [24]

      Zhang L J, Di Y Y, Lu D F. Crystal structure and thermochemical properties of 1-decylammonium hydrobromide (C10H21NH3Br)(s)[J]. J. Chem. Thermodyn., 2011,43(11):1591-1596. doi: 10.1016/j.jct.2011.05.016

    25. [25]

      Housecroft C E, Brooke Jenkins H D. Absolute ion hydration enthalpies and the role of volume within hydration thermodynamics[J]. RSC Adv., 2017,7(45):27881-27894. doi: 10.1039/C6RA25804B

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    4. [4]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    5. [5]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    6. [6]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    7. [7]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    8. [8]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    9. [9]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    10. [10]

      Yinghui Xia Yixi Lin Zhenming Xu . Cation potential guiding structural regulation of lithium halide superionic conductors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100448-100448. doi: 10.1016/j.cjsc.2024.100448

    11. [11]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    12. [12]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    13. [13]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    14. [14]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    15. [15]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    16. [16]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    17. [17]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    18. [18]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    19. [19]

      Yukai TongZhijun WuBo ZhouMin HuAnpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062

    20. [20]

      Yu HeHao JiangShaoxuan YuanJiayi LuQiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807

Metrics
  • PDF Downloads(6)
  • Abstract views(2915)
  • HTML views(199)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return