Citation: Chuang WU, Wen-Bao XU, Hai-Hua ZHANG, Hong-Bing FU. 4-Fluorophenylethylamine-based novel quasi-two-dimensional perovskites: synthesis, electroluminescence, and laser properties[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 501-509. doi: 10.11862/CJIC.2023.008 shu

4-Fluorophenylethylamine-based novel quasi-two-dimensional perovskites: synthesis, electroluminescence, and laser properties

Figures(6)

  • A series of quasi-2D perovskites with both electroluminescence and optical gain properties were designed and synthesized in this work. The 4-FPEA+ (4-FPEAB=4-fluorophenylethylamine hydrobromide) was introduced into CsPbBr3 to prepared quasi-2D perovskites thin films with different n-value quantum wells distribution by using simple solution coating method. The UV-Vis absorption and photoluminescence spectra were adopted to suggest that quantum wells distribution can be modulated effectively by controlling the proportion of precursors in solution precisely. These samples were characterized by scanning electron microscopy and atomic force microscopy. The result suggested that 4-FPEA+ can reduce surface roughness efficiently. When the molar ratio of 4-FPEA+ and CsPbBr3 reached 0.6, as-prepared perovskite films were demonstrated with the highest brightness. Using additive defect passivation strategy with crown ether, more uniform quantum well distribution achieved which further promoted the efficient energy transfer. The light emitting diodes (LED) devices realized the external quantum efficiencies (EQE) as 0.98%. In terms of laser performance, amplified spontaneous emissions (ASEs) with a low threshold of 17.42 μJ· cm-2 and gain coefficients as 35 cm-1 in room temperature were realized.
  • 加载中
    1. [1]

      Li X T, Hoffman J M, Kanatzidis M G. The 2D halide perovskite rule-book: How the spacer influences everything from the structure to optoelectronic device efficiency[J]. Chem. Rev., 2021,121(4):2230-2291. doi: 10.1021/acs.chemrev.0c01006

    2. [2]

      Yang K Y, Li F S, Hu H L, Guo T L, Kim T W. Surface engineering to-wards highly efficient perovskite light-emitting diodes[J]. Nano Energy., 2019,65104029. doi: 10.1016/j.nanoen.2019.104029

    3. [3]

      Lei L, Seyitliyev D, Stuard S, Mendes J, Dong Q, Fu X Y, Chen Y A, He S L, Yi X, Zhu L P, Chang C H, Ade H, Gundogdu K, So F. Efficient energy funneling in quasi-2D perovskites: From light emission to lasing[J]. Adv. Mater., 2020,32(16)1906571. doi: 10.1002/adma.201906571

    4. [4]

      Jeong J E, Park J H, Jang C H, Song M H, Woo H Y. Multifunctional charge transporting materials for perovskite light-emitting diodes[J]. Adv. Mater., 2020,32(51)2002176. doi: 10.1002/adma.202002176

    5. [5]

      Mao L L, Stoumpos C C, Kanatzidis M G. Two-dimensional hybrid halide perovskites: Principles and promises[J]. J. Am. Chem. Soc., 2019,141(3):1171-1190. doi: 10.1021/jacs.8b10851

    6. [6]

      Li R Z, Yi C, Ge R, Zou W, Cheng L, Wang N N, Wang J P, Huang W. Room-temperature electroluminescence from two-dimensional lead halide perovskites[J]. Appl. Phys. Lett., 2016,109(15)151101. doi: 10.1063/1.4964413

    7. [7]

      Era M, Morimoto S, Tsutsui T, Saito S. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4[J]. Appl. Phys. Lett., 1994,65(6):676-678. doi: 10.1063/1.112265

    8. [8]

      Smith I C, Hoke E T, Solis-Ibarra D, Mcgehee M D, Karunadasa H I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angew. Chem. Int. Ed., 2014,53(42):11232-11235. doi: 10.1002/anie.201406466

    9. [9]

      Cao D H Y, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G. 2D homologous perovskites as light-absorbing materials for solar cell applications[J]. J. Am. Chem. Soc., 2015,137(24):7843-7850. doi: 10.1021/jacs.5b03796

    10. [10]

      Yuan M J, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y B, Beauregard E M, Kanjanaboos P, Lu Z H, Kim D H, Sargent E H. Perovskite energy funnels for efficient light-emitting diodes[J]. Nat. Nanotechnol., 2016,11(10):872-877. doi: 10.1038/nnano.2016.110

    11. [11]

      Zhou N, Shen Y H, Li L, Tan S Q, Liu N, Zheng G H J, Chen Q, Zhou H P. Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells[J]. J. Am. Chem. Soc., 2018,140(1):459-465. doi: 10.1021/jacs.7b11157

    12. [12]

      Wang N N, Cheng L, Ge R, Zhang S T, Miao Y F, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y Q, Guo Q, Ke Y, Yu M T, Jin Y Z, Liu Y, Ding Q Q, Di D W, Yang L, Xing G C, Tian H, Jin C H, Gao F, Friend R H, Wang J P, Huang W. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells[J]. Nat. Photonics, 2016,10(11):699-704. doi: 10.1038/nphoton.2016.185

    13. [13]

      Cheng L, Jiang T, Cao Y, Yi C, Wan N N, Huang W, Wang J P. Multiple-quantum-well perovskites for high-performance light-emitting diodes[J]. Adv. Mater., 2020,32(15)1904163. doi: 10.1002/adma.201904163

    14. [14]

      Xu W D, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kawecki M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F. Rational molecular passivation for high-performance perovskite light-emitting diodes[J]. Nat. Photon., 2019,13(6):418-424. doi: 10.1038/s41566-019-0390-x

    15. [15]

      Liu Z, Qiu W D, Peng X M, Sun G W, Liu X Y, Liu D H, Li Z C, He F R, Shen C Y, Gu Q, Ma F L, Yip H L, Hou L T, Qi Z J, Su S J. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nano-structure regulation[J]. Adv. Mater., 2021,33(43)2103268. doi: 10.1002/adma.202103268

    16. [16]

      Jiang J, Chu Z M, Yin Z G, Li J Z, Yang Y G, Chen J R, Wu J L, You J B, Zhang X W. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations[J]. Adv. Mater., 2022,34(36)2204460. doi: 10.1002/adma.202204460

    17. [17]

      Liu Y L, Zhang L Z, Chen S, Liu C, Li Y R, Wu J W, Wang D, Jiang Z Y, Li Y, Li Y, Wang X Z, Xu B M. Water-soluble conjugated polyelectrolyte hole transporting layer for efficient sky-blue perovskite light-emitting diodes[J]. Small, 2021,17(37)2101477. doi: 10.1002/smll.202101477

    18. [18]

      Chen J N, Wang Y G, Gan L, He Y B, Li H Q, Zhai T Y. Generalized Self-doping engineering towards ultrathin and large-sized two-dimensional homologous perovskites[J]. Angew. Chem. Int. Ed., 2017,129(47):15089-15093. doi: 10.1002/ange.201708434

    19. [19]

      Li M L, Gao Q G, Liu P, Liao Q, Zhang H H, Yao J N, Hu W P, Wu Y S, Fu H B. Amplified spontaneous emission based on 2D ruddlesden-popper perovskites[J]. Adv. Funct. Mater., 2018,28(17)1707006. doi: 10.1002/adfm.201707006

    20. [20]

      Zhang H H, Liao Q, Wu Y S, Zhang Z Y, Gao Q G, Liu P, Li M L, Yao J N, Fu H B. 2D ruddlesden-popper perovskites microring laser array[J]. Adv. Mater., 2018,30(15)1706186. doi: 10.1002/adma.201706186

    21. [21]

      Liang Y, Shang Q Y, Wei Q, Zhao L Y, Liu Z, Shi J, Zhong Y G, Chen J, Gao Y, Li M L, Liu X F, Xing G C, Zhang Q. Lasing from mechanically exfoliated 2D homologous ruddlesden-popper perovskite engineered by inorganic layer thickness[J]. Adv. Mater., 2019,31(39)1903030. doi: 10.1002/adma.201903030

    22. [22]

      Liu Z Z, Hu M C, Du J, Shi T C, Wang Z Y, Zhang Z Y, Hu Z P, Zhan Z J, Chen K Q, Liu W M, Tan J, Zhang H, Leng Y X, Li R X. Subwavelength-polarized quasi-two-dimensional perovskite single-mode nanolaser[J]. ACS Nano, 2021,15(4):6900-6908. doi: 10.1021/acsnano.0c10647

    23. [23]

      Wang C H, Dai G, Wang J H, Cui M H, Yang Y G, Yang S R, Qin C C, Chang S, Wu K F, Liu Y F, Zhong H Z. Low-threshold blue quasi-2D perovskite laser through domain distribution control[J]. Nano Lett., 2022,22(3):1338-1344. doi: 10.1021/acs.nanolett.1c04666

    24. [24]

      Qin C J, Sandanayaka A S D, Zhao C Y, Matsushima T, Zhang D Z, Fujihara T, Adachi C. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films[J]. Nature, 2020,585(7823):53-57. doi: 10.1038/s41586-020-2621-1

    25. [25]

      Jiang Y Z, Cui M H, Li S S, Sun C J, Huang Y M, Wei J L, Zhang L, Lv M, Qin C C, Liu Y F, Yuan M J. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes[J]. Nat. Commun., 2021,12(1)336. doi: 10.1038/s41467-020-20555-9

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    3. [3]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    4. [4]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    5. [5]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    6. [6]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    7. [7]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    10. [10]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    11. [11]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    12. [12]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    13. [13]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    14. [14]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    15. [15]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    18. [18]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    19. [19]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    20. [20]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

Metrics
  • PDF Downloads(16)
  • Abstract views(865)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return