Citation: Chuang WU, Wen-Bao XU, Hai-Hua ZHANG, Hong-Bing FU. 4-Fluorophenylethylamine-based novel quasi-two-dimensional perovskites: synthesis, electroluminescence, and laser properties[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 501-509. doi: 10.11862/CJIC.2023.008 shu

4-Fluorophenylethylamine-based novel quasi-two-dimensional perovskites: synthesis, electroluminescence, and laser properties

Figures(6)

  • A series of quasi-2D perovskites with both electroluminescence and optical gain properties were designed and synthesized in this work. The 4-FPEA+ (4-FPEAB=4-fluorophenylethylamine hydrobromide) was introduced into CsPbBr3 to prepared quasi-2D perovskites thin films with different n-value quantum wells distribution by using simple solution coating method. The UV-Vis absorption and photoluminescence spectra were adopted to suggest that quantum wells distribution can be modulated effectively by controlling the proportion of precursors in solution precisely. These samples were characterized by scanning electron microscopy and atomic force microscopy. The result suggested that 4-FPEA+ can reduce surface roughness efficiently. When the molar ratio of 4-FPEA+ and CsPbBr3 reached 0.6, as-prepared perovskite films were demonstrated with the highest brightness. Using additive defect passivation strategy with crown ether, more uniform quantum well distribution achieved which further promoted the efficient energy transfer. The light emitting diodes (LED) devices realized the external quantum efficiencies (EQE) as 0.98%. In terms of laser performance, amplified spontaneous emissions (ASEs) with a low threshold of 17.42 μJ· cm-2 and gain coefficients as 35 cm-1 in room temperature were realized.
  • 加载中
    1. [1]

      Li X T, Hoffman J M, Kanatzidis M G. The 2D halide perovskite rule-book: How the spacer influences everything from the structure to optoelectronic device efficiency[J]. Chem. Rev., 2021,121(4):2230-2291. doi: 10.1021/acs.chemrev.0c01006

    2. [2]

      Yang K Y, Li F S, Hu H L, Guo T L, Kim T W. Surface engineering to-wards highly efficient perovskite light-emitting diodes[J]. Nano Energy., 2019,65104029. doi: 10.1016/j.nanoen.2019.104029

    3. [3]

      Lei L, Seyitliyev D, Stuard S, Mendes J, Dong Q, Fu X Y, Chen Y A, He S L, Yi X, Zhu L P, Chang C H, Ade H, Gundogdu K, So F. Efficient energy funneling in quasi-2D perovskites: From light emission to lasing[J]. Adv. Mater., 2020,32(16)1906571. doi: 10.1002/adma.201906571

    4. [4]

      Jeong J E, Park J H, Jang C H, Song M H, Woo H Y. Multifunctional charge transporting materials for perovskite light-emitting diodes[J]. Adv. Mater., 2020,32(51)2002176. doi: 10.1002/adma.202002176

    5. [5]

      Mao L L, Stoumpos C C, Kanatzidis M G. Two-dimensional hybrid halide perovskites: Principles and promises[J]. J. Am. Chem. Soc., 2019,141(3):1171-1190. doi: 10.1021/jacs.8b10851

    6. [6]

      Li R Z, Yi C, Ge R, Zou W, Cheng L, Wang N N, Wang J P, Huang W. Room-temperature electroluminescence from two-dimensional lead halide perovskites[J]. Appl. Phys. Lett., 2016,109(15)151101. doi: 10.1063/1.4964413

    7. [7]

      Era M, Morimoto S, Tsutsui T, Saito S. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4[J]. Appl. Phys. Lett., 1994,65(6):676-678. doi: 10.1063/1.112265

    8. [8]

      Smith I C, Hoke E T, Solis-Ibarra D, Mcgehee M D, Karunadasa H I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angew. Chem. Int. Ed., 2014,53(42):11232-11235. doi: 10.1002/anie.201406466

    9. [9]

      Cao D H Y, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G. 2D homologous perovskites as light-absorbing materials for solar cell applications[J]. J. Am. Chem. Soc., 2015,137(24):7843-7850. doi: 10.1021/jacs.5b03796

    10. [10]

      Yuan M J, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y B, Beauregard E M, Kanjanaboos P, Lu Z H, Kim D H, Sargent E H. Perovskite energy funnels for efficient light-emitting diodes[J]. Nat. Nanotechnol., 2016,11(10):872-877. doi: 10.1038/nnano.2016.110

    11. [11]

      Zhou N, Shen Y H, Li L, Tan S Q, Liu N, Zheng G H J, Chen Q, Zhou H P. Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells[J]. J. Am. Chem. Soc., 2018,140(1):459-465. doi: 10.1021/jacs.7b11157

    12. [12]

      Wang N N, Cheng L, Ge R, Zhang S T, Miao Y F, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y Q, Guo Q, Ke Y, Yu M T, Jin Y Z, Liu Y, Ding Q Q, Di D W, Yang L, Xing G C, Tian H, Jin C H, Gao F, Friend R H, Wang J P, Huang W. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells[J]. Nat. Photonics, 2016,10(11):699-704. doi: 10.1038/nphoton.2016.185

    13. [13]

      Cheng L, Jiang T, Cao Y, Yi C, Wan N N, Huang W, Wang J P. Multiple-quantum-well perovskites for high-performance light-emitting diodes[J]. Adv. Mater., 2020,32(15)1904163. doi: 10.1002/adma.201904163

    14. [14]

      Xu W D, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kawecki M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F. Rational molecular passivation for high-performance perovskite light-emitting diodes[J]. Nat. Photon., 2019,13(6):418-424. doi: 10.1038/s41566-019-0390-x

    15. [15]

      Liu Z, Qiu W D, Peng X M, Sun G W, Liu X Y, Liu D H, Li Z C, He F R, Shen C Y, Gu Q, Ma F L, Yip H L, Hou L T, Qi Z J, Su S J. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nano-structure regulation[J]. Adv. Mater., 2021,33(43)2103268. doi: 10.1002/adma.202103268

    16. [16]

      Jiang J, Chu Z M, Yin Z G, Li J Z, Yang Y G, Chen J R, Wu J L, You J B, Zhang X W. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations[J]. Adv. Mater., 2022,34(36)2204460. doi: 10.1002/adma.202204460

    17. [17]

      Liu Y L, Zhang L Z, Chen S, Liu C, Li Y R, Wu J W, Wang D, Jiang Z Y, Li Y, Li Y, Wang X Z, Xu B M. Water-soluble conjugated polyelectrolyte hole transporting layer for efficient sky-blue perovskite light-emitting diodes[J]. Small, 2021,17(37)2101477. doi: 10.1002/smll.202101477

    18. [18]

      Chen J N, Wang Y G, Gan L, He Y B, Li H Q, Zhai T Y. Generalized Self-doping engineering towards ultrathin and large-sized two-dimensional homologous perovskites[J]. Angew. Chem. Int. Ed., 2017,129(47):15089-15093. doi: 10.1002/ange.201708434

    19. [19]

      Li M L, Gao Q G, Liu P, Liao Q, Zhang H H, Yao J N, Hu W P, Wu Y S, Fu H B. Amplified spontaneous emission based on 2D ruddlesden-popper perovskites[J]. Adv. Funct. Mater., 2018,28(17)1707006. doi: 10.1002/adfm.201707006

    20. [20]

      Zhang H H, Liao Q, Wu Y S, Zhang Z Y, Gao Q G, Liu P, Li M L, Yao J N, Fu H B. 2D ruddlesden-popper perovskites microring laser array[J]. Adv. Mater., 2018,30(15)1706186. doi: 10.1002/adma.201706186

    21. [21]

      Liang Y, Shang Q Y, Wei Q, Zhao L Y, Liu Z, Shi J, Zhong Y G, Chen J, Gao Y, Li M L, Liu X F, Xing G C, Zhang Q. Lasing from mechanically exfoliated 2D homologous ruddlesden-popper perovskite engineered by inorganic layer thickness[J]. Adv. Mater., 2019,31(39)1903030. doi: 10.1002/adma.201903030

    22. [22]

      Liu Z Z, Hu M C, Du J, Shi T C, Wang Z Y, Zhang Z Y, Hu Z P, Zhan Z J, Chen K Q, Liu W M, Tan J, Zhang H, Leng Y X, Li R X. Subwavelength-polarized quasi-two-dimensional perovskite single-mode nanolaser[J]. ACS Nano, 2021,15(4):6900-6908. doi: 10.1021/acsnano.0c10647

    23. [23]

      Wang C H, Dai G, Wang J H, Cui M H, Yang Y G, Yang S R, Qin C C, Chang S, Wu K F, Liu Y F, Zhong H Z. Low-threshold blue quasi-2D perovskite laser through domain distribution control[J]. Nano Lett., 2022,22(3):1338-1344. doi: 10.1021/acs.nanolett.1c04666

    24. [24]

      Qin C J, Sandanayaka A S D, Zhao C Y, Matsushima T, Zhang D Z, Fujihara T, Adachi C. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films[J]. Nature, 2020,585(7823):53-57. doi: 10.1038/s41586-020-2621-1

    25. [25]

      Jiang Y Z, Cui M H, Li S S, Sun C J, Huang Y M, Wei J L, Zhang L, Lv M, Qin C C, Liu Y F, Yuan M J. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes[J]. Nat. Commun., 2021,12(1)336. doi: 10.1038/s41467-020-20555-9

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    3. [3]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    4. [4]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    7. [7]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    15. [15]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    16. [16]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

Metrics
  • PDF Downloads(15)
  • Abstract views(753)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return