Citation: Zhao-Yu WANG, Zhao-Jie YANG, Jin-Tian CHENG, Jin-Yi CHEN, Ming-Wen ZHANG. Vis-NIR light-responsive direct Z-scheme LaNiO3/CdS heterojunction photocatalysts for H2 evolution[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 533-544. doi: 10.11862/CJIC.2023.007 shu

Vis-NIR light-responsive direct Z-scheme LaNiO3/CdS heterojunction photocatalysts for H2 evolution

  • Corresponding author: Ming-Wen ZHANG, mwzhang1989@163.com
  • Received Date: 16 August 2022
    Revised Date: 4 December 2022

Figures(13)

  • The Vis-NIR light-responsive direct Z-scheme LaNiO3/CdS nanohybrid was synthesized via a refluxing method, fully characterized, and used in photocatalytic H2 evolution. The H2 evolved over LaNiO3/CdS photocatalyst in 5 h was 737 μmol under visible light irradiation, which was 4.3 times that over CdS (172 μmol) ascribed to the formed heterojunction between LaNiO3 and CdS. Moreover, the introduced LaNiO3 extended the light absorption to the NIR region and the H2 evolution increased to 996 μmol under Vis-NIR light irradiation. LaNiO3 exhibited upconversion luminescence at 406 and 628 nm when excited at 808 nm, which means that LaNiO3 can generate charge carriers under NIR light irradiation, thereby further improving the efficiency of its photocatalytic H2 evolution.
  • 加载中
    1. [1]

      Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem. Soc. Rev., 2009,38:253-278. doi: 10.1039/B800489G

    2. [2]

      Meng X G, Liu L Q, Ouyang S X, Xu H, Wang D F, Zhao N Q, Ye J H. Nanometals for solar-to-chemical energy conversion: From semi-conductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis[J]. Adv. Mater., 2016,28:6781-6803. doi: 10.1002/adma.201600305

    3. [3]

      CAO Z Y, WU Y, GAO J H. Bi9P2O18Cl: Phase Transition and Hydrogen Production by Photocatalytic Water-Splitting[J]. Chinese J. Inorg. Chem., 2022,38(5):969-976.  

    4. [4]

      Wang S B, Guan B Y, Lou X. Construction of ZnIn2S4-In2O3 hierarchi-cal tubular heterostructures for efficient CO2 photoreduction[J]. J. Am. Chem. Soc., 2018,140:5037-5040. doi: 10.1021/jacs.8b02200

    5. [5]

      Xu Y S, Fan M J, Yang W J, Xiao Y H, Zeng L T, Wu X, Xu Q H, Su C L, He Q J. Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared photocatalytic H2 production[J]. Adv. Mater., 2021,332101455. doi: 10.1002/adma.202101455

    6. [6]

      Yang M Q, Gao M M, Hong M H, Ho G W. Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production[J]. Adv. Mater., 2018,301802894. doi: 10.1002/adma.201802894

    7. [7]

      Huang W C, Gao Y, Wang J X, Ding P C, Yan M, Wu F M, Liu J, Liu D Q, Guo C S, Yang B, Cao W W. Plasmonic enhanced reactive oxygen species activation on low-work-function tungsten nitride for direct near-infrared driven photocatalysis[J]. Small, 2020,162070247. doi: 10.1002/smll.202070247

    8. [8]

      Wang S B, Wang Y, Zhang A, Zang S L, Lou X. Photocatalysis: supporting ultrathin ZnIn2S4 Nanosheets on Co/N-doped graphitic carbon nanocages for efficient photocatalytic H2 generation[J]. Adv. Mater., 2019,311903404. doi: 10.1002/adma.201903404

    9. [9]

      Wang S B, Guan B Y, Wang X, Lou X. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution[J]. J. Am. Chem. Soc., 2018,140:15145-15148. doi: 10.1021/jacs.8b07721

    10. [10]

      Qi Y, Zuo Q, Mei Y Q, Yao T J, Wu J. Porous NiCo2O4 sheet cata-lysts for the microwave-assisted Fenton reaction[J]. ACS Appl. Nano Mater., 2020,3:7152-7160. doi: 10.1021/acsanm.0c01474

    11. [11]

      Rashti A, Lu X E, Dobson A, Hassani E, Nejad F, He K, Oh T. Tuning MOF-derived Co3O4/NiCo2O4 nanostructures for high-performance energy storage[J]. ACS Appl. Energy Mater., 2021,4:1537-1547. doi: 10.1021/acsaem.0c02736

    12. [12]

      LI Z Q, CHEN X W, WANG Y, CHENG T, HUANG Y, DONG P Y, WANG W Y, ZHANG B B, XI X G. Preparation of CeTiO4/g-C3N4 composite with efficient photocatalytic activity for dye-degradation[J]. Chinese J. Inorg. Chem., 2022,38(1):53-62.  

    13. [13]

      Chen H B, Liu W X, Qin Z Z. ZnO/ZnFe2O4 nanocomposite as a broadspectrum photo-Fenton-like photocatalyst with near-infrared activity[J]. Catal. Sci. Technol., 2017,7:2236-2244. doi: 10.1039/C7CY00308K

    14. [14]

      Wang Z Y, Peng J W, Feng X, Ding Z X, Li Z H. Wide spectrum responsive CdS/NiTiO3/CoS with superior photocatalytic performance for hydrogen evolution[J]. Catal. Sci. Technol., 2017,7:2524-2530. doi: 10.1039/C7CY00476A

    15. [15]

      Wang Z Y, Su B, Xu J L, Hou Y D, Ding Z X. Direct Z-scheme ZnIn2S4/LaNiO3 nanohybrid with enhanced photocatalytic performance for H 2 evolution[J]. Int. J. Hydrog. Energy, 2020,45:4113-4121. doi: 10.1016/j.ijhydene.2019.12.077

    16. [16]

      Xu J L, Sun C F, Wang Z Y, Hou Y D, Ding Z X, Wang S B. Perovskite oxide LaNiO 3 nanoparticles for boosting H2 evolution over commercial CdS with visible light[J]. Chem.-Eur. J., 2018,24:18512-18517. doi: 10.1002/chem.201802920

    17. [17]

      Zhang G, Liu G, Wang L Z, Irvine J T S. Inorganic perovskite photo-catalysts for solar energy utilization[J]. Chem. Soc. Rev., 2016,45:5951-5984. doi: 10.1039/C5CS00769K

    18. [18]

      Lin X H, Gao Y L, Jiang M, Zhang Y F, Hou Y D, Dai W X, Wang S B, Ding Z X. Photocatalytic CO2 reduction promoted by uniform perovskite hydroxide CoSn (OH)6 nanocubes[J]. Appl. Catal. B-Environ., 2018,224:1009-1016. doi: 10.1016/j.apcatb.2017.11.035

    19. [19]

      Qin J N, Lin L H, Wang X. A perovskite oxide LaCoO3 cocatalyst for efficient photocatalytic reduction of CO2 with visible light[J]. Chem. Commun., 2018,54:2272-2275. doi: 10.1039/C7CC07954K

    20. [20]

      Li Q, Guo B D, Yu J G, Ran J R, Zhang B H, Yan H J, Gong J R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets[J]. J. Am. Chem. Soc., 2011,133:10878-10884. doi: 10.1021/ja2025454

    21. [21]

      ZHONG Q Y, LIU Y, LIU X M, ZHANG W K, WANG H B. Preparation and photocatalytic performance of CdS@g-C3N4 core-shell composite nanoparticles[J]. Chinese J. Inorg. Chem., 2020,36(5):864-874.  

    22. [22]

      CAO D, AN H, YAN X A, ZHAO Y X, YANG G D, ME H. Fabrication of Z-scheme heterojunction of SiC/Pt/Cds nanorod for efficient photocatalytic H2 evolution[J]. Acta Phys.-Chim. Sin., 2020,36(3)1901051.  

    23. [23]

      Tan P F, Liu P, Zhu A Q, Zeng W X, Cui H, Pan J. Rational design of Z-scheme system based on 3D hierarchical CdS supported 0D Co9S8 nanoparticles for superior photocatalytic H2 generation[J]. ACS Sustainable Chem. Eng., 2018,6:10385-10394. doi: 10.1021/acssuschemeng.8b01751

    24. [24]

      Chachvalvutikul A, Pudkon W, Luangwanta T, Thongtem T, Thong-tem S, Kittiwachana S, Kaowphong S. Enhanced photocatalytic deg-radation of methylene blue by a direct Z-scheme Bi2S3/ZnIn2S4 photocatalyst[J]. Mater. Res. Bull., 2019,111:53-60. doi: 10.1016/j.materresbull.2018.10.034

    25. [25]

      LIU D, CHEN S T, LI R J, PENG T Y. Review of Z-scheme hetero-junctions for photocatalytic energy conversion[J]. Acta Phys.-Chim. Sin., 2021,37(6)2010017.  

    26. [26]

      Zhang E H, Zhu Q H, Huang J H, Liu J, Tan G Q, Sun C J, Li T, Liu S, Li Y M, Wang H Z, Wan X D, Wen Z H, Fan F T, Zhang J T, Ari-ga K. Visually resolving the direct Z-scheme heterojunction in CdS@ZnIn2S4 hollow cubes for photocatalytic evolution of H2 and H2O2 from pure water[J]. Appl. Catal. B-Environ., 2021,293120213. doi: 10.1016/j.apcatb.2021.120213

    27. [27]

      WANG Z Y, XU J L, ZHANG M W, CHEN W T. Direct Z-scheme LaNiO 3/Mn0.2Cd0.8S heterojunction photocatalysts: enhanced photo-catalytic performance for H2 evolution and investigation of mechanism[J]. Chinese J. Inorg. Chem., 2021,37(10):1809-1818. doi: 10.11862/CJIC.2021.215

    28. [28]

      Wei L, Zeng D Q, Xie Z Z, Zeng Q R, Zheng H W, Fujita T, Wei Y Z. NiO nanosheets coupled with CdS nanorods as 2D/1D heterojunction for improved photocatalytic hydrogen evolution[J]. Front. Chem., 2021,9655583. doi: 10.3389/fchem.2021.655583

    29. [29]

      Luo X, Ke Y M, Yu L, Wang Y, Homewood K, Chen X X, Gao Y. Tandem CdS/TiO2(B) nanosheet photocatalysts for enhanced H2 evo-lution[J]. Appl. Surf. Sci., 2020,515145970. doi: 10.1016/j.apsusc.2020.145970

    30. [30]

      Khettab M, Omeiri S, Sellam D, Ladjouzi M, Trari M. Characterization of LaNiO 3 prepared by sol-gel: Application to hydrogen evolution under visible light[J]. Mater. Chem. Phys., 2012,132:625-630. doi: 10.1016/j.matchemphys.2011.11.078

    31. [31]

      Zhou X S, Chen Y L, Li C F, Zhang L Q, Zhang X T, Ning X M, Zhan L, Luo J. Construction of LaNiO3 nanoparticles modified g-C3N4 nanosheets for enhancing visible light photocatalytic activity towards tetracycline degradation[J]. Sep. Purif. Technol., 2019,211:179-188. doi: 10.1016/j.seppur.2018.09.075

    32. [32]

      Pan B, Wu Y, Qin J N, Wang C Y. Ultrathin Co0.85Se nanosheet co-catalyst for visible-light CO2 photoreduction[J]. Catal. Today, 2019,335:208-213. doi: 10.1016/j.cattod.2018.11.017

    33. [33]

      Jiang C K, Zhang L L, Gao F, Huang X Y, Lei R, Ye Y, Yuan J, Liu P. Promoting photocatalytic hydrogen production by a core-shell CdS@MoOx photocatalyst connected by an S-Mo "bridge"[J]. Catal. Sci. Technol., 2020,10:1368-1375. doi: 10.1039/C9CY02492A

    34. [34]

      Liu Y, Zhang P, Tian B Z, Zhang J L. Core-shell structural CdS@SnO2 nanorods with excellent visible light photocatalytic activ-ity for the selective oxidation of benzyl alcohol to benzaldehyde[J]. ACS Appl. Mater. Interfaces, 2015,7:13849-13858. doi: 10.1021/acsami.5b04128

    35. [35]

      Hu Y H, Schlipf J, Wussler M, Petrus M, Jaegermann W, Bein T, Buschbaum P, Docampo P. Hybrid perovskite/perovskite heterojunction solar cells[J]. ACS Nano, 2016,10:5999-6007. doi: 10.1021/acsnano.6b01535

    36. [36]

      Yang J S, Lin W H, Lin C Y, Wang B S, Wu J J. n-Fe2O3 to N+-TiO2 heterojunction photoanode for photoelectrochemical water oxidation[J]. ACS Appl. Mater. Interfaces, 2015,7:13314-13321. doi: 10.1021/acsami.5b01489

    37. [37]

      Qin H, Zhao X, Zhao H K, Yan L L, Fan W L. Well-organized CN-M/CN-U/Pt-TiO2 ternary heterojunction design for boosting photocatalytic H2 production via electronic continuous and directional trans-mission[J]. Appl. Catal. Agen., 2019,576:74-84. doi: 10.1016/j.apcata.2019.03.002

    38. [38]

      Cheng L, Xiang Q J, Liao Y L, Zhang H W. CdS-based photocata-lysts[J]. Energy Environ. Sci., 2018,11:1362-1391. doi: 10.1039/C7EE03640J

    39. [39]

      Zhu L Y, Li H, Xia P F, Liu Z R, Xiong D H. Hierarchical ZnO deco-rated with CeO2 nanoparticles as the direct Z-Scheme heterojunction for enhanced photocatalytic activity[J]. ACS Appl. Mater. Interfaces, 2018,10:39679-39687. doi: 10.1021/acsami.8b13782

    40. [40]

      Fu J W, Xu Q L, Low J H, Jiang C J, Yu J G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Appl. Catal. B-Environ., 2019,243:556-565. doi: 10.1016/j.apcatb.2018.11.011

    41. [41]

      Ye L, Wen Z H. ZnIn2S4 nanosheets decorating WO3 nanorods core-shell hybrids for boosting visible-light photocatalysis hydrogen generation[J]. Int. J. Hydrog. Energy, 2019,44:3751-3759. doi: 10.1016/j.ijhydene.2018.12.093

    42. [42]

      Mishra B P, Parid K. Orienting Z scheme charge transfer in graphitic carbon nitride-based systems for photocatalytic energy and environmental applications[J]. J. Mater. Chem. A, 2021,9:10039-10080.

  • 加载中
    1. [1]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    2. [2]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    3. [3]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    4. [4]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    5. [5]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    6. [6]

      Di AnMingdong SheZiyang ZhangTing ZhangMiaomiao XuJinjun ShaoQian ShenXuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841

    7. [7]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    8. [8]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    9. [9]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    10. [10]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    11. [11]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    12. [12]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    13. [13]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    14. [14]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    15. [15]

      Shangqian ZhangJiaxuan LiXuan HuZelong ChenJunliang DongChenhao HuShuang ChaoYinghua LvYuxin PeiZhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314

    16. [16]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    17. [17]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    18. [18]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    19. [19]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    20. [20]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

Metrics
  • PDF Downloads(8)
  • Abstract views(635)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return