Vis-NIR light-responsive direct Z-scheme LaNiO3/CdS heterojunction photocatalysts for H2 evolution
- Corresponding author: Ming-Wen ZHANG, mwzhang1989@163.com
Citation: Zhao-Yu WANG, Zhao-Jie YANG, Jin-Tian CHENG, Jin-Yi CHEN, Ming-Wen ZHANG. Vis-NIR light-responsive direct Z-scheme LaNiO3/CdS heterojunction photocatalysts for H2 evolution[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 533-544. doi: 10.11862/CJIC.2023.007
Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem. Soc. Rev., 2009,38:253-278. doi: 10.1039/B800489G
Meng X G, Liu L Q, Ouyang S X, Xu H, Wang D F, Zhao N Q, Ye J H. Nanometals for solar-to-chemical energy conversion: From semi-conductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis[J]. Adv. Mater., 2016,28:6781-6803. doi: 10.1002/adma.201600305
CAO Z Y, WU Y, GAO J H. Bi9P2O18Cl: Phase Transition and Hydrogen Production by Photocatalytic Water-Splitting[J]. Chinese J. Inorg. Chem., 2022,38(5):969-976.
Wang S B, Guan B Y, Lou X. Construction of ZnIn2S4-In2O3 hierarchi-cal tubular heterostructures for efficient CO2 photoreduction[J]. J. Am. Chem. Soc., 2018,140:5037-5040. doi: 10.1021/jacs.8b02200
Xu Y S, Fan M J, Yang W J, Xiao Y H, Zeng L T, Wu X, Xu Q H, Su C L, He Q J. Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared photocatalytic H2 production[J]. Adv. Mater., 2021,332101455. doi: 10.1002/adma.202101455
Yang M Q, Gao M M, Hong M H, Ho G W. Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production[J]. Adv. Mater., 2018,301802894. doi: 10.1002/adma.201802894
Huang W C, Gao Y, Wang J X, Ding P C, Yan M, Wu F M, Liu J, Liu D Q, Guo C S, Yang B, Cao W W. Plasmonic enhanced reactive oxygen species activation on low-work-function tungsten nitride for direct near-infrared driven photocatalysis[J]. Small, 2020,162070247. doi: 10.1002/smll.202070247
Wang S B, Wang Y, Zhang A, Zang S L, Lou X. Photocatalysis: supporting ultrathin ZnIn2S4 Nanosheets on Co/N-doped graphitic carbon nanocages for efficient photocatalytic H2 generation[J]. Adv. Mater., 2019,311903404. doi: 10.1002/adma.201903404
Wang S B, Guan B Y, Wang X, Lou X. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution[J]. J. Am. Chem. Soc., 2018,140:15145-15148. doi: 10.1021/jacs.8b07721
Qi Y, Zuo Q, Mei Y Q, Yao T J, Wu J. Porous NiCo2O4 sheet cata-lysts for the microwave-assisted Fenton reaction[J]. ACS Appl. Nano Mater., 2020,3:7152-7160. doi: 10.1021/acsanm.0c01474
Rashti A, Lu X E, Dobson A, Hassani E, Nejad F, He K, Oh T. Tuning MOF-derived Co3O4/NiCo2O4 nanostructures for high-performance energy storage[J]. ACS Appl. Energy Mater., 2021,4:1537-1547. doi: 10.1021/acsaem.0c02736
LI Z Q, CHEN X W, WANG Y, CHENG T, HUANG Y, DONG P Y, WANG W Y, ZHANG B B, XI X G. Preparation of CeTiO4/g-C3N4 composite with efficient photocatalytic activity for dye-degradation[J]. Chinese J. Inorg. Chem., 2022,38(1):53-62.
Chen H B, Liu W X, Qin Z Z. ZnO/ZnFe2O4 nanocomposite as a broadspectrum photo-Fenton-like photocatalyst with near-infrared activity[J]. Catal. Sci. Technol., 2017,7:2236-2244. doi: 10.1039/C7CY00308K
Wang Z Y, Peng J W, Feng X, Ding Z X, Li Z H. Wide spectrum responsive CdS/NiTiO3/CoS with superior photocatalytic performance for hydrogen evolution[J]. Catal. Sci. Technol., 2017,7:2524-2530. doi: 10.1039/C7CY00476A
Wang Z Y, Su B, Xu J L, Hou Y D, Ding Z X. Direct Z-scheme ZnIn2S4/LaNiO3 nanohybrid with enhanced photocatalytic performance for H 2 evolution[J]. Int. J. Hydrog. Energy, 2020,45:4113-4121. doi: 10.1016/j.ijhydene.2019.12.077
Xu J L, Sun C F, Wang Z Y, Hou Y D, Ding Z X, Wang S B. Perovskite oxide LaNiO 3 nanoparticles for boosting H2 evolution over commercial CdS with visible light[J]. Chem.-Eur. J., 2018,24:18512-18517. doi: 10.1002/chem.201802920
Zhang G, Liu G, Wang L Z, Irvine J T S. Inorganic perovskite photo-catalysts for solar energy utilization[J]. Chem. Soc. Rev., 2016,45:5951-5984. doi: 10.1039/C5CS00769K
Lin X H, Gao Y L, Jiang M, Zhang Y F, Hou Y D, Dai W X, Wang S B, Ding Z X. Photocatalytic CO2 reduction promoted by uniform perovskite hydroxide CoSn (OH)6 nanocubes[J]. Appl. Catal. B-Environ., 2018,224:1009-1016. doi: 10.1016/j.apcatb.2017.11.035
Qin J N, Lin L H, Wang X. A perovskite oxide LaCoO3 cocatalyst for efficient photocatalytic reduction of CO2 with visible light[J]. Chem. Commun., 2018,54:2272-2275. doi: 10.1039/C7CC07954K
Li Q, Guo B D, Yu J G, Ran J R, Zhang B H, Yan H J, Gong J R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets[J]. J. Am. Chem. Soc., 2011,133:10878-10884. doi: 10.1021/ja2025454
ZHONG Q Y, LIU Y, LIU X M, ZHANG W K, WANG H B. Preparation and photocatalytic performance of CdS@g-C3N4 core-shell composite nanoparticles[J]. Chinese J. Inorg. Chem., 2020,36(5):864-874.
CAO D, AN H, YAN X A, ZHAO Y X, YANG G D, ME H. Fabrication of Z-scheme heterojunction of SiC/Pt/Cds nanorod for efficient photocatalytic H2 evolution[J]. Acta Phys.-Chim. Sin., 2020,36(3)1901051.
Tan P F, Liu P, Zhu A Q, Zeng W X, Cui H, Pan J. Rational design of Z-scheme system based on 3D hierarchical CdS supported 0D Co9S8 nanoparticles for superior photocatalytic H2 generation[J]. ACS Sustainable Chem. Eng., 2018,6:10385-10394. doi: 10.1021/acssuschemeng.8b01751
Chachvalvutikul A, Pudkon W, Luangwanta T, Thongtem T, Thong-tem S, Kittiwachana S, Kaowphong S. Enhanced photocatalytic deg-radation of methylene blue by a direct Z-scheme Bi2S3/ZnIn2S4 photocatalyst[J]. Mater. Res. Bull., 2019,111:53-60. doi: 10.1016/j.materresbull.2018.10.034
LIU D, CHEN S T, LI R J, PENG T Y. Review of Z-scheme hetero-junctions for photocatalytic energy conversion[J]. Acta Phys.-Chim. Sin., 2021,37(6)2010017.
Zhang E H, Zhu Q H, Huang J H, Liu J, Tan G Q, Sun C J, Li T, Liu S, Li Y M, Wang H Z, Wan X D, Wen Z H, Fan F T, Zhang J T, Ari-ga K. Visually resolving the direct Z-scheme heterojunction in CdS@ZnIn2S4 hollow cubes for photocatalytic evolution of H2 and H2O2 from pure water[J]. Appl. Catal. B-Environ., 2021,293120213. doi: 10.1016/j.apcatb.2021.120213
WANG Z Y, XU J L, ZHANG M W, CHEN W T. Direct Z-scheme LaNiO 3/Mn0.2Cd0.8S heterojunction photocatalysts: enhanced photo-catalytic performance for H2 evolution and investigation of mechanism[J]. Chinese J. Inorg. Chem., 2021,37(10):1809-1818. doi: 10.11862/CJIC.2021.215
Wei L, Zeng D Q, Xie Z Z, Zeng Q R, Zheng H W, Fujita T, Wei Y Z. NiO nanosheets coupled with CdS nanorods as 2D/1D heterojunction for improved photocatalytic hydrogen evolution[J]. Front. Chem., 2021,9655583. doi: 10.3389/fchem.2021.655583
Luo X, Ke Y M, Yu L, Wang Y, Homewood K, Chen X X, Gao Y. Tandem CdS/TiO2(B) nanosheet photocatalysts for enhanced H2 evo-lution[J]. Appl. Surf. Sci., 2020,515145970. doi: 10.1016/j.apsusc.2020.145970
Khettab M, Omeiri S, Sellam D, Ladjouzi M, Trari M. Characterization of LaNiO 3 prepared by sol-gel: Application to hydrogen evolution under visible light[J]. Mater. Chem. Phys., 2012,132:625-630. doi: 10.1016/j.matchemphys.2011.11.078
Zhou X S, Chen Y L, Li C F, Zhang L Q, Zhang X T, Ning X M, Zhan L, Luo J. Construction of LaNiO3 nanoparticles modified g-C3N4 nanosheets for enhancing visible light photocatalytic activity towards tetracycline degradation[J]. Sep. Purif. Technol., 2019,211:179-188. doi: 10.1016/j.seppur.2018.09.075
Pan B, Wu Y, Qin J N, Wang C Y. Ultrathin Co0.85Se nanosheet co-catalyst for visible-light CO2 photoreduction[J]. Catal. Today, 2019,335:208-213. doi: 10.1016/j.cattod.2018.11.017
Jiang C K, Zhang L L, Gao F, Huang X Y, Lei R, Ye Y, Yuan J, Liu P. Promoting photocatalytic hydrogen production by a core-shell CdS@MoOx photocatalyst connected by an S-Mo "bridge"[J]. Catal. Sci. Technol., 2020,10:1368-1375. doi: 10.1039/C9CY02492A
Liu Y, Zhang P, Tian B Z, Zhang J L. Core-shell structural CdS@SnO2 nanorods with excellent visible light photocatalytic activ-ity for the selective oxidation of benzyl alcohol to benzaldehyde[J]. ACS Appl. Mater. Interfaces, 2015,7:13849-13858. doi: 10.1021/acsami.5b04128
Hu Y H, Schlipf J, Wussler M, Petrus M, Jaegermann W, Bein T, Buschbaum P, Docampo P. Hybrid perovskite/perovskite heterojunction solar cells[J]. ACS Nano, 2016,10:5999-6007. doi: 10.1021/acsnano.6b01535
Yang J S, Lin W H, Lin C Y, Wang B S, Wu J J. n-Fe2O3 to N+-TiO2 heterojunction photoanode for photoelectrochemical water oxidation[J]. ACS Appl. Mater. Interfaces, 2015,7:13314-13321. doi: 10.1021/acsami.5b01489
Qin H, Zhao X, Zhao H K, Yan L L, Fan W L. Well-organized CN-M/CN-U/Pt-TiO2 ternary heterojunction design for boosting photocatalytic H2 production via electronic continuous and directional trans-mission[J]. Appl. Catal. Agen., 2019,576:74-84. doi: 10.1016/j.apcata.2019.03.002
Cheng L, Xiang Q J, Liao Y L, Zhang H W. CdS-based photocata-lysts[J]. Energy Environ. Sci., 2018,11:1362-1391. doi: 10.1039/C7EE03640J
Zhu L Y, Li H, Xia P F, Liu Z R, Xiong D H. Hierarchical ZnO deco-rated with CeO2 nanoparticles as the direct Z-Scheme heterojunction for enhanced photocatalytic activity[J]. ACS Appl. Mater. Interfaces, 2018,10:39679-39687. doi: 10.1021/acsami.8b13782
Fu J W, Xu Q L, Low J H, Jiang C J, Yu J G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Appl. Catal. B-Environ., 2019,243:556-565. doi: 10.1016/j.apcatb.2018.11.011
Ye L, Wen Z H. ZnIn2S4 nanosheets decorating WO3 nanorods core-shell hybrids for boosting visible-light photocatalysis hydrogen generation[J]. Int. J. Hydrog. Energy, 2019,44:3751-3759. doi: 10.1016/j.ijhydene.2018.12.093
Mishra B P, Parid K. Orienting Z scheme charge transfer in graphitic carbon nitride-based systems for photocatalytic energy and environmental applications[J]. J. Mater. Chem. A, 2021,9:10039-10080.
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Xingmin Chen , Yunyun Wu , Yao Tang , Peishen Li , Shuai Gao , Qiang Wang , Wen Liu , Sihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Yan Cheng , Hua-Peng Ruan , Yan Peng , Longhe Li , Zhenqiang Xie , Lang Liu , Shiyong Zhang , Hengyun Ye , Zhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554
Hui-Juan Wang , Wen-Wen Xing , Zhen-Hai Yu , Yong-Xue Li , Heng-Yi Zhang , Qilin Yu , Hongjie Zhu , Yao-Yao Wang , Yu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102