Synergistic enhancement of catalytic water electrolysis performance of iron-cobalt-based materials by oxygen vacancies and phosphorus doping
- Corresponding author: Xiao-Peng QI, qxpai@163.com
Citation: Chuan-Wang ZENG, Xiao-Xiao LI, Jin-Ming ZENG, Cao LIU, Jia-Jun LAI, Xiao-Peng QI. Synergistic enhancement of catalytic water electrolysis performance of iron-cobalt-based materials by oxygen vacancies and phosphorus doping[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 202-210. doi: 10.11862/CJIC.2023.006
YUAN H F, MA Z Z, WANG S M, LI J P, WANG X G. Engineering oxygen vacancy-rich Co3O4 nanowire as high- efficiency and durable bifunctional electrocatalyst for overall alkaline water splitting[J]. CIESC Journal, 2020,71(12):5831-5841.
Xu Q C, Jiang H, Zhang H X, Jiang H B, Li C Z. Phosphorus-driven mesoporous Co3O4 nanosheets with tunable oxygen vacancies for the enhanced oxygen evolution reaction[J]. Electrochim. Acta, 2018,259962967.
FENG J W, ZHOU Q. Effect of different Co contents on structure of nanoporous Ni - Co and catalytic performance of hydrogen evolution[J]. Chinese J. Inorg. Chem., 2019,35(10):1746-1754. doi: 10.11862/CJIC.2019.215
Zhu J, Hu L S, Zhao P X, Lee L Y S, Wong K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. CrystEngComm, 2019,120(2):851-918.
Jiang S H, Zhang R Y, Liu H X, Rao Y, Yu Y N, Chen S, Yue Q, Zhang Y N, Kang Y J. Promoting formation of oxygen vacancies in twodimensional cobalt-doped ceria nanosheets for efficient hydrogen evolution[J]. J. Am. Chem. Soc., 2020,142(14):6461-6466. doi: 10.1021/jacs.9b13915
LI C, TIAN P, PANG H C, YE J W, NING G L. Tungsten doped ironnickel layered hydroxide for oxygen evolution and hydrogen evolution reaction[J]. Chinese J. Inorg. Chem., 2020,36(8)14921498.
Huang Y R, Yang W W, Yu Y S, Hao S. Ordered mesoporous spinel CoFe2O4 as efficient electrocatalyst for the oxygen evolution reaction[J]. J. Electroanal. Chem., 2019,840:409-414. doi: 10.1016/j.jelechem.2019.04.010
Yan Y T, Wang P C, Lin J H, Cao J, Qi J L. Modification strategies on transition metal-based electrocatalysts for efficient water splitting[J]. J. Energy Chem., 2021,58:446-462. doi: 10.1016/j.jechem.2020.10.010
Zhang S F, Wei N, Yao Z J, Zhao X Y, Du M, Zhou Q S. Oxygen vacancy-based ultrathin Co3O4 nanosheets as a high-efficiency electrocatalyst for oxygen evolution reaction[J]. Int. J. Hydrog. Energy, 2021,46(7):5286-5295. doi: 10.1016/j.ijhydene.2020.11.072
Zhang L H, Wei T, Jiang Z M, Liu C Q, Jiang H, Chang J, Sheng L Z, Zhou Q H, Yuan L B, Fan Z J. Electrostatic interaction in electrospun nanofibers: Double - layer carbon protection of CoFe2O4 nanosheets enabling ultralong-life and ultrahigh-rate lithium ion storage[J]. Nano Energy, 2018,48:238-247. doi: 10.1016/j.nanoen.2018.03.053
Liu T T, Ma X, Liu D N, Hao S, Du G, Ma Y J, Asiri A M, Sun X P, Chen L. Mn doping of CoP nanosheets array: An efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values[J]. ACS Catal., 2017,7(1):98-102. doi: 10.1021/acscatal.6b02849
Nemiwal M, Gosu V, Zhang T C, Kumar D. Metal organic frameworks as electrocatalysts: Hydrogen evolution reactions and overall water splitting[J]. Int. J. Hydrog. Energy, 2021,46(17):10216-10238. doi: 10.1016/j.ijhydene.2020.12.146
Zhang T W, Li Z F, Wang L K, Zhang Z X, Wang S W. Spinel CoFe2O4 supported by three dimensional graphene as high - performance bi-functional electrocatalysts for oxygen reduction and evolution reaction[J]. Int. J. Hydrog. Energy, 2019,44(3):1610-1619. doi: 10.1016/j.ijhydene.2018.11.120
Wang Z Y, Chen J Y, Song E H, Wang N, Dong J C, Zhang X, Ajayan P M, Yao W, Wang C F, Liu J J, Shen J F, Ye M X. Manipulation on active electronic states of metastable phase β-NiMoO4 for large current density hydrogen evolution[J]. Nat. Commun., 2021,12(1)5960. doi: 10.1038/s41467-021-26256-1
Li Z H, Lv Z H, Liu X, Wang G X, Lin Y S, Xie G W, Jiang L H. Magnetic-field guided synthesis of highly active Ni-S-CoFe2O4 electrocatalysts for oxygen evolution reaction[J]. Renew. Energy, 2021,165:612-618. doi: 10.1016/j.renene.2020.11.083
Bi J L, Zhai X J, Liu G S, Chi J Q, Wang X Y, Chen S J, Xiao Z Y, Wang L. Low loading of P modified Rh nanoparticles encapsulated in N, P-doped carbon for boosted and pH-universal hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2022,47(6):3791-3800. doi: 10.1016/j.ijhydene.2021.11.036
Guo J Q, Zhan Z X, Lei T, Yin P. Facile synthesis of self-supported intertwined columnar NiCoP as a high efficient electrocatalyst for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2022,47(9)59745989.
Li J G, Sun H C, Lv L, Li Z S, Ao X, Xu C H, Li Y, Wang C D. Metalorganic framework - derived hierarchical (Co, Ni)Se2@NiFe LDH hollow nanocages for enhanced oxygen evolution[J]. ACS Appl. Mater. Interfaces, 2019,11(8):8106-8114. doi: 10.1021/acsami.8b22133
Wang F M, Chen J W, Qi X P, Yang H, Jiang H H, Deng Y Q, Liang T X. Increased nucleation sites in nickel foam for the synthesis of MoP@Ni3P/NF nanosheets for bifunctional water splitting[J]. Appl. Surf. Sci., 2019,481:1403-1411. doi: 10.1016/j.apsusc.2019.03.200
Wang H Q, Zhang X W, Wang J G, Liu H L, Hu S X, Zhou W J, Liu H, Wang X. Puffing quaternary FexCoyNi1-x-yP nanoarray via kinetically controlled alkaline etching for robust overall water splitting[J]. Sci. China-Mater., 2020,63(6):1054-1064. doi: 10.1007/s40843-019-1268-7
Zhuang L H, Ge L, Yang Y S, Li M R, Jia Y, Yao X D, Zhu Z H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction[J]. Adv. Mater., 2017,29(17)1606793. doi: 10.1002/adma.201606793
Yan K L, Shang X, Liu Z Z, Dong B, Lu S S, Chi J Q, Gao W K, Chai Y M, Liu C G. A facile method for reduced CoFe2O4 nanosheets with rich oxygen vacancies for efficient oxygen evolution reaction[J]. Int. J. Hydrog. Energy, 2017,42(38):24150-24158. doi: 10.1016/j.ijhydene.2017.07.165
Xiao Z H, Wang Y, Huang Y C, Wei Z X, Dong C L, Ma J M, Shen S H, Li Y F, Wang S Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting[J]. Energy Environ. Sci., 2017,10(12):2563-2569. doi: 10.1039/C7EE01917C
Murthy A P, Theerthagiri J, Madhavan J, Murugan K. Highly active MoS2/carbon electrocatalysts for the hydrogen evolution reaction— Insight into the effect of the internal resistance and roughness factor on the Tafel slope[J]. Phys. Chem. Chem. Phys., 2017,19(3):1988-1998. doi: 10.1039/C6CP07416B
Huang L B, Zhao L, Zhang Y, Chen Y Y, Zhang Q H, Luo H, Zhang X, Tang T, Gu L, Hu J S. Self-limited on-site conversion of MoO3 Nanodots into vertically aligned ultrasmall monolayer MoS2 for efficient hydrogen evolution[J]. Adv. Energy Mater., 2018,8(21)1800734. doi: 10.1002/aenm.201800734
Liang H F, Gandi A N, Anjum D H, Wang X B, Schwingenschlögl U, Alshareef H N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting[J]. Nano Lett., 2016,16(12):7718-7725. doi: 10.1021/acs.nanolett.6b03803
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433