Citation: Chuan-Wang ZENG, Xiao-Xiao LI, Jin-Ming ZENG, Cao LIU, Jia-Jun LAI, Xiao-Peng QI. Synergistic enhancement of catalytic water electrolysis performance of iron-cobalt-based materials by oxygen vacancies and phosphorus doping[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 202-210. doi: 10.11862/CJIC.2023.006 shu

Synergistic enhancement of catalytic water electrolysis performance of iron-cobalt-based materials by oxygen vacancies and phosphorus doping

  • Corresponding author: Xiao-Peng QI, qxpai@163.com
  • Received Date: 21 June 2022
    Revised Date: 5 December 2022

Figures(7)

  • Oxygen vacancies and hetero atom filling play an important role in the catalytic performance of materials. To develop an efficient and stable water electrolysis catalyst, based on the oxygen vacancies and phosphorus doping, nanoflower structures with oxygen vacancy and phosphorus doping were synthesized on iron foam by in-situ immersion growth and two-step heat treatment as hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts. CoFe2O4 has been reported as a promising electrocatalyst for OER and oxygen reduction reaction (ORR). However, CoFe2O4 exhibits poor conductivity and slow electrocatalytic reaction in HER. The formation of oxygen vacancy (Ov) in CoFe2O4 can effectively regulate the electronic structure of the catalyst surface and contribute to the formation of more defects and vacancies, thus improving the activity of OER. Then, we added phosphorus atoms to fill the vacancy, and the prepared P-Ov-CoFe2O4/IF showed excellent performance of HER and OER in the alkaline electrocatalytic test. At the current density of 10 mA·cm-2, the overpotentials of HER and OER were only 54 and 191 mV, and the Tafel slopes were 57 and 54 mV·dec-1, respectively. The prepared electrocatalyst also dem-onstrated excellent cycling stability.
  • 加载中
    1. [1]

      YUAN H F, MA Z Z, WANG S M, LI J P, WANG X G. Engineering oxygen vacancy-rich Co3O4 nanowire as high- efficiency and durable bifunctional electrocatalyst for overall alkaline water splitting[J]. CIESC Journal, 2020,71(12):5831-5841.  

    2. [2]

      Xu Q C, Jiang H, Zhang H X, Jiang H B, Li C Z. Phosphorus-driven mesoporous Co3O4 nanosheets with tunable oxygen vacancies for the enhanced oxygen evolution reaction[J]. Electrochim. Acta, 2018,259962967.

    3. [3]

      FENG J W, ZHOU Q. Effect of different Co contents on structure of nanoporous Ni - Co and catalytic performance of hydrogen evolution[J]. Chinese J. Inorg. Chem., 2019,35(10):1746-1754. doi: 10.11862/CJIC.2019.215 

    4. [4]

      Zhu J, Hu L S, Zhao P X, Lee L Y S, Wong K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. CrystEngComm, 2019,120(2):851-918.

    5. [5]

      Jiang S H, Zhang R Y, Liu H X, Rao Y, Yu Y N, Chen S, Yue Q, Zhang Y N, Kang Y J. Promoting formation of oxygen vacancies in twodimensional cobalt-doped ceria nanosheets for efficient hydrogen evolution[J]. J. Am. Chem. Soc., 2020,142(14):6461-6466. doi: 10.1021/jacs.9b13915

    6. [6]

      LI C, TIAN P, PANG H C, YE J W, NING G L. Tungsten doped ironnickel layered hydroxide for oxygen evolution and hydrogen evolution reaction[J]. Chinese J. Inorg. Chem., 2020,36(8)14921498.  

    7. [7]

      Huang Y R, Yang W W, Yu Y S, Hao S. Ordered mesoporous spinel CoFe2O4 as efficient electrocatalyst for the oxygen evolution reaction[J]. J. Electroanal. Chem., 2019,840:409-414. doi: 10.1016/j.jelechem.2019.04.010

    8. [8]

      Yan Y T, Wang P C, Lin J H, Cao J, Qi J L. Modification strategies on transition metal-based electrocatalysts for efficient water splitting[J]. J. Energy Chem., 2021,58:446-462. doi: 10.1016/j.jechem.2020.10.010

    9. [9]

      Zhang S F, Wei N, Yao Z J, Zhao X Y, Du M, Zhou Q S. Oxygen vacancy-based ultrathin Co3O4 nanosheets as a high-efficiency electrocatalyst for oxygen evolution reaction[J]. Int. J. Hydrog. Energy, 2021,46(7):5286-5295. doi: 10.1016/j.ijhydene.2020.11.072

    10. [10]

      Zhang L H, Wei T, Jiang Z M, Liu C Q, Jiang H, Chang J, Sheng L Z, Zhou Q H, Yuan L B, Fan Z J. Electrostatic interaction in electrospun nanofibers: Double - layer carbon protection of CoFe2O4 nanosheets enabling ultralong-life and ultrahigh-rate lithium ion storage[J]. Nano Energy, 2018,48:238-247. doi: 10.1016/j.nanoen.2018.03.053

    11. [11]

      Liu T T, Ma X, Liu D N, Hao S, Du G, Ma Y J, Asiri A M, Sun X P, Chen L. Mn doping of CoP nanosheets array: An efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values[J]. ACS Catal., 2017,7(1):98-102. doi: 10.1021/acscatal.6b02849

    12. [12]

      Nemiwal M, Gosu V, Zhang T C, Kumar D. Metal organic frameworks as electrocatalysts: Hydrogen evolution reactions and overall water splitting[J]. Int. J. Hydrog. Energy, 2021,46(17):10216-10238. doi: 10.1016/j.ijhydene.2020.12.146

    13. [13]

      Zhang T W, Li Z F, Wang L K, Zhang Z X, Wang S W. Spinel CoFe2O4 supported by three dimensional graphene as high - performance bi-functional electrocatalysts for oxygen reduction and evolution reaction[J]. Int. J. Hydrog. Energy, 2019,44(3):1610-1619. doi: 10.1016/j.ijhydene.2018.11.120

    14. [14]

      Wang Z Y, Chen J Y, Song E H, Wang N, Dong J C, Zhang X, Ajayan P M, Yao W, Wang C F, Liu J J, Shen J F, Ye M X. Manipulation on active electronic states of metastable phase β-NiMoO4 for large current density hydrogen evolution[J]. Nat. Commun., 2021,12(1)5960. doi: 10.1038/s41467-021-26256-1

    15. [15]

      Li Z H, Lv Z H, Liu X, Wang G X, Lin Y S, Xie G W, Jiang L H. Magnetic-field guided synthesis of highly active Ni-S-CoFe2O4 electrocatalysts for oxygen evolution reaction[J]. Renew. Energy, 2021,165:612-618. doi: 10.1016/j.renene.2020.11.083

    16. [16]

      Bi J L, Zhai X J, Liu G S, Chi J Q, Wang X Y, Chen S J, Xiao Z Y, Wang L. Low loading of P modified Rh nanoparticles encapsulated in N, P-doped carbon for boosted and pH-universal hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2022,47(6):3791-3800. doi: 10.1016/j.ijhydene.2021.11.036

    17. [17]

      Guo J Q, Zhan Z X, Lei T, Yin P. Facile synthesis of self-supported intertwined columnar NiCoP as a high efficient electrocatalyst for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2022,47(9)59745989.

    18. [18]

      Li J G, Sun H C, Lv L, Li Z S, Ao X, Xu C H, Li Y, Wang C D. Metalorganic framework - derived hierarchical (Co, Ni)Se2@NiFe LDH hollow nanocages for enhanced oxygen evolution[J]. ACS Appl. Mater. Interfaces, 2019,11(8):8106-8114. doi: 10.1021/acsami.8b22133

    19. [19]

      Wang F M, Chen J W, Qi X P, Yang H, Jiang H H, Deng Y Q, Liang T X. Increased nucleation sites in nickel foam for the synthesis of MoP@Ni3P/NF nanosheets for bifunctional water splitting[J]. Appl. Surf. Sci., 2019,481:1403-1411. doi: 10.1016/j.apsusc.2019.03.200

    20. [20]

      Wang H Q, Zhang X W, Wang J G, Liu H L, Hu S X, Zhou W J, Liu H, Wang X. Puffing quaternary FexCoyNi1-x-yP nanoarray via kinetically controlled alkaline etching for robust overall water splitting[J]. Sci. China-Mater., 2020,63(6):1054-1064. doi: 10.1007/s40843-019-1268-7

    21. [21]

      Zhuang L H, Ge L, Yang Y S, Li M R, Jia Y, Yao X D, Zhu Z H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction[J]. Adv. Mater., 2017,29(17)1606793. doi: 10.1002/adma.201606793

    22. [22]

      Yan K L, Shang X, Liu Z Z, Dong B, Lu S S, Chi J Q, Gao W K, Chai Y M, Liu C G. A facile method for reduced CoFe2O4 nanosheets with rich oxygen vacancies for efficient oxygen evolution reaction[J]. Int. J. Hydrog. Energy, 2017,42(38):24150-24158. doi: 10.1016/j.ijhydene.2017.07.165

    23. [23]

      Xiao Z H, Wang Y, Huang Y C, Wei Z X, Dong C L, Ma J M, Shen S H, Li Y F, Wang S Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting[J]. Energy Environ. Sci., 2017,10(12):2563-2569. doi: 10.1039/C7EE01917C

    24. [24]

      Murthy A P, Theerthagiri J, Madhavan J, Murugan K. Highly active MoS2/carbon electrocatalysts for the hydrogen evolution reaction— Insight into the effect of the internal resistance and roughness factor on the Tafel slope[J]. Phys. Chem. Chem. Phys., 2017,19(3):1988-1998. doi: 10.1039/C6CP07416B

    25. [25]

      Huang L B, Zhao L, Zhang Y, Chen Y Y, Zhang Q H, Luo H, Zhang X, Tang T, Gu L, Hu J S. Self-limited on-site conversion of MoO3 Nanodots into vertically aligned ultrasmall monolayer MoS2 for efficient hydrogen evolution[J]. Adv. Energy Mater., 2018,8(21)1800734. doi: 10.1002/aenm.201800734

    26. [26]

      Liang H F, Gandi A N, Anjum D H, Wang X B, Schwingenschlögl U, Alshareef H N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting[J]. Nano Lett., 2016,16(12):7718-7725. doi: 10.1021/acs.nanolett.6b03803

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    3. [3]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    4. [4]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    5. [5]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    9. [9]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    10. [10]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    11. [11]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    12. [12]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    15. [15]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    17. [17]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    18. [18]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    19. [19]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    20. [20]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

Metrics
  • PDF Downloads(25)
  • Abstract views(2241)
  • HTML views(591)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return