High performance perovskite solar cell based on passivation by a multifunctional amino acid derivative
- Corresponding author: Jian SONG, jsoong@cumt.edu.cn Chun-Guang REN, cgren@ytu.edu.cn
Citation:
Jian SONG, Xing-Zhou SU, Qian-Nan YAO, Xue-Kun YANG, Yu-Long ZHAO, Ying-Huai QIANG, Chun-Guang REN. High performance perovskite solar cell based on passivation by a multifunctional amino acid derivative[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(2): 327-336.
doi:
10.11862/CJIC.2022.292
Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible- light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131:6050-6051. doi: 10.1021/ja809598r
Cai B, Xing Y D, Yang Z, Zhang W H, Qiu J S. High performance hybrid solar cells sensitized by organolead halide perovskites[J]. Energy Environ. Sci., 2013,6:1480-1485. doi: 10.1039/c3ee40343b
Huang S, Shan H S, Xuan W F, Xu W J, Hu D N, Zhu L, Huang C, Sui W H, Xiao C J, Zhao Y L, Qiang Y H, Gu X Q, Song J, Zhou C. High-performance humidity sensor based on CsPdBr3 nanocrystals for noncontact sensing of hydromechanical characteristics of unsaturated soil[J]. Phys. Status Solidi-Rapid Res. Lett., 2022,162200017. doi: 10.1002/pssr.202200017
Li T T, Pan Y F, Wang Z, Xia Y D, Chen Y H, Huang W. Additive engineering for highly efficient organic - inorganic halide perovskite solar cells: Recent advances and perspectives[J]. J. Mater. Chem. A, 2017,5:12602-12652. doi: 10.1039/C7TA01798G
Zheng X P, Hou Y, Bao C X, Yin J, Yuan F L, Huang Z R, Song K P, Liu J K, Troughton J, Gasparini N, Zhou C, Lin Y B, Xue D J, Chen B, Johnston A K, Wei N, Hedhili M N, Wei M Y, Alsalloum A Y, Maity P, Turedi B, Yang C, Baran D, Anthopoulos T D, Han Y, Lu Z H, Mohammed O F, Gao F, Sargent E H, Bakr O M. Managing grains and interfaces via ligand anchoring enables 22.3% - efficiency inverted perovskite solar cells[J]. Nat. Energy, 2020,5:131-140. doi: 10.1038/s41560-019-0538-4
Chen Y, Yang Z, Wang S B, Zheng X J, Wu Y H, Yuan N Y, Zhang W H, Liu S Z. Design of an inorganic mesoporous hole- transporting layer for highly efficient and stable inverted perovskite solar cells[J]. Adv. Mater., 2018,301805660. doi: 10.1002/adma.201805660
Xia Y R, Zhao C, Zhao P Y, Mao L Y, Ding Y C, Hong D C, Tian Y X, Yan W S, Jin Z. Pseudohalide substitution and potassium doping in FA0.98K0.02Pb(SCN)2I for high-stability hole-conductor-free perovskite solar cells[J]. J. Power Sources, 2021,494229781. doi: 10.1016/j.jpowsour.2021.229781
YANG Z S, KE W F, WANG Y X, HUANG L Q, GUO P C, ZHU H. Preparation and characterization of hybrid perovskite (NH3C6H12NH3) CuCl4[J]. Chinese J. Inorg. Chem., 2017,33(9):1568-1572.
Liang J, Zhao P Y, Wang C X, Wang Y R, Hu Y, Zhu G Y, Ma L B, Liu J, Jin Z. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability[J]. J. Am. Chem. Soc., 2017,139:14009-14012. doi: 10.1021/jacs.7b07949
Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy Environ. Sci., 2014,7:982-988. doi: 10.1039/c3ee43822h
Hong D C, Zhao P Y, Du Y, Zhao C, Xia Y R, Wei Z H, Jin Z, Tian Y X. Inhibition of phase segregation in cesium lead mixed - halide perovskites by B-site doping[J]. iScience, 2020,23101415. doi: 10.1016/j.isci.2020.101415
Zhang H Y, Shi J J, Zhu L F, Luo Y H, Li D M, Wu H J, Meng Q B. Polystyrene stabilized perovskite component, grain and microstructure for improved efficiency and stability of planar solar cells[J]. Nano Energy, 2018,43:383-392. doi: 10.1016/j.nanoen.2017.11.024
Cho A N, Park N G. Impact of interfacial layers in perovskite solar cells[J]. ChemSusChem, 2017,10:3687-3704. doi: 10.1002/cssc.201701095
Park N G, Gratzel M, Miyasaka T, Zhu K, Emery K. Towards stable and commercially available perovskite solar cells[J]. Nat. Energy, 2016,116152. doi: 10.1038/nenergy.2016.152
Song J, Zhao L, Huang S, Yan X F, Qiu Q Y, Zhao Y L, Zhu L, Qiang Y H, Li H S, Li G R. A p - p+ homojunction enhanced hole transfer in inverted planar perovskite solar cells[J]. ChemSusChem, 2021,14:1396-1403. doi: 10.1002/cssc.202100083
Yu W, Yu S W, Zhang J, Liang W S, Wang X L, Guo X, Li C. Two-in-one additive-engineering strategy for improved air stability of planar perovskite solar cells[J]. Nano Energy, 2018,45:229-235. doi: 10.1016/j.nanoen.2017.12.041
Pazos-Outon L M, Xiao T P, Yablonovitch E. Fundamental efficiency limit of lead iodide perovskite solar cells[J]. J. Phys. Chem. Lett., 2018,9:1703-1711. doi: 10.1021/acs.jpclett.7b03054
Stranks S D. Nonradiative losses in metal halide perovskites[J]. ACS Energy Lett., 2017,2:1515-1525. doi: 10.1021/acsenergylett.7b00239
Yang J C, Tang W J, Yuan R H, Chen Y, Wang J, Wu Y H, Yin W J, Yuan N Y, Ding J N, Zhang W H. Defect mitigation using D-penicillamine for efficient methylammonium-free perovskite solar cells with high operational stability[J]. Chem. Sci., 2021,122050. doi: 10.1039/D0SC06354A
Chen B, Rudd P N, Yang S, Yuan Y B, Huang J S. Imperfections and their passivation in halide perovskite solar cells[J]. Chem. Soc. Rev., 2019,48:3842-3867. doi: 10.1039/C8CS00853A
LUO Y, ZHANG G L, MA S P, ZHU C T, CHEN T, ZHANG L, ZHU L, GUO X Y, YANG Y. Effect of bilayer SnO2 electron transport layer on the interfacial charge transport in perovskite solar cells[J]. Chinese J. Inorg. Chem., 2022,38(5):850-860.
Shan H S, Xuan W F, Li Z, Hu D N, Gu X Q, Huang S. Room temperature hydrogen sulfide sensor based on tributyltin oxide-functionalized perovskite CsPbBr3 quantum dots[J]. ACS Appl. Nano Mater., 2022,5:6801-6809. doi: 10.1021/acsanm.2c00791
Shao Y H, Xiao Z G, Bi C, Yuan Y B, Huang J S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells[J]. Nat. Commun., 2014,55784. doi: 10.1038/ncomms6784
Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith H J. Supramolecular halogen bond passivation of organic - inorganic halide perovskite solar cells[J]. Nano Lett., 2014,14:3247-3254. doi: 10.1021/nl500627x
Zheng X P, Chen B, Dai J, Fang Y J, Bai Y, Lin Y Z, Wei H T, Zeng X C, Huang J S. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations[J]. Nat. Energy, 2017,217102. doi: 10.1038/nenergy.2017.102
Yang S, Dai J, Yu Z H, Shao Y C, Zhou Y, Xiao X, Zeng X C, Huang J S. Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells[J]. J. Am. Chem. Soc., 2019,141:5781-5787. doi: 10.1021/jacs.8b13091
Braly I L, deQuilettes D W, Pazos-Outón L M, Burke S, Ziffer M W, Ginger D S, Hillhouse H W. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency[J]. Nat. Photonics, 2018,12355. doi: 10.1038/s41566-018-0154-z
Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M J, Jeon S, Ning Z J, McDowell J J, Kanjanaboos P, Sun J P, Lan X Z, Quan L N, Kim D H, Hill I G, Maksymovych P, Sargent E H. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes[J]. Nat. Commun., 2015,67081. doi: 10.1038/ncomms8081
Tan H R, Jain A, Voznyy O, Lan X Z, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H. Efficient and stable solution- processed planar perovskite solar cells via contact passivation[J]. Science, 2017,355:722-726. doi: 10.1126/science.aai9081
HOU W J, MA Y T, HAN G Y. Secondary crystallization and passivation of perovskite film induced by dithizone post-treatment[J]. Chinese J.Inorg. Chem., 2021,37(8):1414-1420.
Rajagopal A, Stoddard R J, Jo S B, Hillhouse H W, Jen A K. Overcoming the photovoltage plateau in large bandgap perovskite photovoltaics[J]. Nano Lett., 2018,18:3985-3993. doi: 10.1021/acs.nanolett.8b01480
Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N. Phenylalkylamine passivation of organolead halide perovskites enabling high - efficiency and air - stable photovoltaic cells[J]. Adv. Mater., 2016,28:9986-9992. doi: 10.1002/adma.201603062
Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W. Perovskite light - emitting diodes based on spontaneously formed submicrometre-scale structures[J]. Nature, 2018,562:249-253. doi: 10.1038/s41586-018-0576-2
Zhang W W, Lei X L, Liu J H, Dong J, Yan X W, Gao W, Dong H, Ran C X, Wu Z X. Efficient charge collection promoted by interface passivation using amino acid toward high performance perovskite solar cells[J]. Phys. Status Solidi-Rapid Res. Lett., 2018,131800505.
Choi M J, Lee Y S, Cho I H, Kim S S, Kim D H, Kwon S N, Na S I. Functional additives for high-performance inverted planar perovskite solar cells with exceeding 20% efficiency: Selective complexation of organic cations in precursors[J]. Nano Energy, 2020,71104639. doi: 10.1016/j.nanoen.2020.104639
Zhang W Y, He L, Tang D Y, Li X. Surfactant sodium dodecyl ben-zene sulfonate improves the efficiency and stability of air-processed perovskite solar cells with negligible hysteresis[J]. Solar RRL, 2020,42000376. doi: 10.1002/solr.202000376
Zhao L, Sun X W, Yao Q N, Huang S, Zhu L, Song J, Zhao Y L, Qiang Y H. Field-effect control in hole transport layer composed of Li: NiO/NiO for highly efficient inverted planar perovskite solar cells[J]. Adv. Mater. Interfaces, 2022,92101562. doi: 10.1002/admi.202101562
Cui Q P, Zhao L, Sun X W, Yao Q N, Huang S, Zhu L, Zhao Y L, Song J, Qiang Y H. Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr: NiOx bilayer hole transport layer[J]. Chin. Phys. B, 2022,31038801. doi: 10.1088/1674-1056/ac1fda
Qin Y S, Song J, Qiu Q Y, Liu Y, Zhao Y L, Zhu L, Qing Y H. High-quality NiO thin film by low - temperature spray combustion method for perovskite solar cells[J]. J. Alloy. Compd., 2019,810151970. doi: 10.1016/j.jallcom.2019.151970
Yun S C, Ma S, Kwon H C, Kim K, Jang G, Yang H, Moon J. Amino acid salt - driven planar hybrid perovskite solar cells with enhanced humidity stability[J]. Nano Energy, 2019,59:481-491. doi: 10.1016/j.nanoen.2019.02.064
Pretsch E, Bühlmann P, Badertscher M. Structure determination of organic compounds. Berlin: Springer-Verlag, 2000: 217
Abdelmageed G, Mackeen C, Hellier K, Jewell L, Seymour L, Tingwald M, Bridges F, Zhang J, Carter S. Effect of temperature on light induced degradation in methylammonium lead iodide perovskite thin films and solar cells[J]. Sol. Energy Mater. Sol. Cells, 2018,174:566-571. doi: 10.1016/j.solmat.2017.09.053
Zhu K P, Cong S, Lu Z, Lou Y H, He L, Li J M, Ding J N, Yuang N Y, Rümmeli M H, Zou G F. Enhanced perovskite solar cell performance via defect passivation with ethylamine alcohol chlorides additive[J]. J. Power Sources, 2019,428:82-87. doi: 10.1016/j.jpowsour.2019.04.056
Yuan S H, Qian F, Yang S M, Cai Y, Wang Q, Sun J, Liu Z K, Liu S Z. NbF5: A novel alpha - phase stabilizer for FA - based perovskite solar cells with high efficiency[J]. Adv. Funct. Mater., 2019,291807850. doi: 10.1002/adfm.201807850
Wu S F, Li Z, Zhang J, Liu T T, Zhu Z L, Jen A K Y. Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses[J]. Chem. Commun., 2019,55:4315-4318. doi: 10.1039/C9CC00016J
Song J, Qiu Q Y, Sun X W, Wang L L. Surface modification of perovskite film by an amino acid derivative for perovskite solar cell[J]. Org. Electron., 2022,108106598. doi: 10.1016/j.orgel.2022.106598
Zhang P Y, Chen J J, Song L X, Gu N X, Du P F, Chen X, Zha L Y, Chen W H, Xiong J. Passivation of perovskite surfaces using 2-hydroxyacetophenone to fabricate solar cells with over 20.7% efficiency under air environment[J]. Appl. Surf. Sci., 2022,598153842. doi: 10.1016/j.apsusc.2022.153842
Zhang M M, Hu W P, Shang Y B, Zhou W R, Zhang W F, Yang S F. Surface passivation of perovskite film by sodium toluenesulfonate for highly efficient solar cells[J]. Solar RRL, 2020,42000113. doi: 10.1002/solr.202000113
Jiang H, Yan Z, Zhao H, Yuan S H, Yang Z, Li J, Liu B, Niu T Q, Feng J S, Wang Q, Wang D P, Yang H Q, Liu Z K, Liu S F. Bifunctional hydroxylamine hydrochloride incorporated perovskite films for efficient and stable planar perovskite solar cells[J]. ACS Appl. Energy Mater., 2018,1:900-909. doi: 10.1021/acsaem.8b00060
Yang X Y, Luo D Y, Xiang Y R, Zhao L C, Anaya M, Shen Y L, Wu J, Yang W Q, Chiang Y H, Tu Y G, Su R, Hu Q, Yu H Y, Shao G S, Huang W, Russell T P, Gong Q H, Stranks S D, Zhang W, Zhu R. Buried interfaces in halide perovskite photovoltaics[J]. Adv. Mater., 2021,332006435. doi: 10.1002/adma.202006435
Hu J L, Xu X, Chen Y J, Wu S H, Wang Z, Wang Y S, Jiang X F, Cai B Y, Shi T T, Brabec C J, Mai Y H, Guo F. Overcoming photovoltage deficit via natural amino acid passivation for efficient perovskite solar cells and modules[J]. J. Mater. Chem. A, 2021,9:5857-5865. doi: 10.1039/D0TA12342K
Song J, Ren Y F, Gong S J, Zhao L, Xuan W F, Zhu L, Zhao Y L, Qiang Y H, Gao L L, Huang S. Performance enhancement of crystal silicon solar cell by a CsPbBr3 - Cs4PbBr6 perovskite quantum dot@ZnO/ethylene vinyl acetate copolymer downshifting composite film[J]. Solar RRL, 2022,62200336. doi: 10.1002/solr.202200336
Heo J, Im K, Lee H, Kim J, Im S. Ni, Ti-co-doped MoO2 nanoparticles with high stability and improved conductivity for hole transporting material in planar metal halide perovskite solar cells[J]. J. Ind. Eng. Chem., 2021,94:376-383. doi: 10.1016/j.jiec.2020.11.010
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nanocrystals of cesium lead halide perovskites (CsPbX 3, X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett., 2015,15:3692-3696. doi: 10.1021/nl5048779
De Roo J, Ibáñez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J, Van Driessche I, Kovalenko M, Hens Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals[J]. ACS Nano, 2016,10:2071-2081. doi: 10.1021/acsnano.5b06295
Lindblad R, Bi D, Park B W, Oscarsson J, Gorgoi M, Siegbahn H, Odelius M, Johansson E M J, Rensmo H. Electronic structure of TiO2/CH 3NH3PbI3 perovskite solar cell interfaces[J]. J. Phys. Chem. Lett., 2014,5:648-653. doi: 10.1021/jz402749f
Singh T, Miyasaka T. Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity[J]. Adv. Energy Mater., 2018,81700677. doi: 10.1002/aenm.201700677
Jia J B, Dong J, Wu J H, Wei H M, Cao B Q. Combustion procedure deposited SnO2 electron transport layers for high efficient perovskite solar cells[J]. J. Alloy. Compd., 2020,844156032. doi: 10.1016/j.jallcom.2020.156032
Liu X P, Wu J H, Guo Q Y, Yang Y Q, Luo H, Liu Q Z, Wang X B, He X, Huang M L, Lan Z. Pyrrole: An additive for improving the efficiency and stability of perovskite solar cells[J]. J. Mater. Chem. A, 2019,7:11764-11770. doi: 10.1039/C9TA02916H
Nguyen M, Yoon S H, Kim K S. Hydrothermally fabricated TiO2 heterostructure boosts efficiency of MAPbI3 perovskite solar cells[J]. J. Ind. Eng. Chem., 2022,106:382-392. doi: 10.1016/j.jiec.2021.11.013
Duan J L, Wang Y D, Yang X Y, Tang Q W. Alkyl-chain-regulated charge transfer in fluorescent inorganic CsPbBr3 perovskite solar cells[J]. Angew. Chem. Int. Ed., 2020,59:4391-4395. doi: 10.1002/anie.202000199
Song J, Yang Y, Zhao Y L, Che M, Zhu L, Gu X Q, Qiang Y H. Morphology modification of perovskite film by a simple post-treatment process in perovskite solar cell[J]. Mater. Sci. Eng. B, 2017,217:18-25. doi: 10.1016/j.mseb.2017.01.004
Song J, Li S P, Zhao Y L, Yuan J, Zhu Y, Fang Y, Zhu L, Gu X Q, Qiang Y H. Performance enhancement of perovskite solar cells by doping TiO2 blocking layer with group VB elements[J]. J. Alloy. Compd., 2017,694:1232-1238. doi: 10.1016/j.jallcom.2016.10.106
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
Zongsheng LI , Yichao WANG , Yujie WANG , Wenhao ZHU , Xiaoyao YIN , Wudan YANG , Songzhi ZHENG , Weihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
Mingxuan Qi , Lanyu Jin , Honghe Yao , Zipeng Xu , Teng Cheng , Qi Chen , Cheng Zhu , Yang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098
Lixing ZHANG , Yaowen WANG , Xu HAN , Junhong ZHOU , Jinghui WANG , Liping LI , Guangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007
Yi ZHANG , Guang LI , Wenxuan FAN , Qingfeng YI . Influence of bismuth trisulfide on the electrochemical performance of iron electrode. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445
Runjie Li , Hang Liu , Xisheng Wang , Wanqun Zhang , Wanqun Hu , Kaiping Yang , Qiang Zhou , Si Liu , Pingping Zhu , Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
Wen Jiang , Jieli Lin , Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
Chuan′an DING , Weibo YAN , Shaoying WANG , Hao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Yawen Guo , Dawei Li , Yang Gao , Cuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050