High performance perovskite solar cell based on passivation by a multifunctional amino acid derivative
- Corresponding author: Jian SONG, jsoong@cumt.edu.cn Chun-Guang REN, cgren@ytu.edu.cn
Citation:
Jian SONG, Xing-Zhou SU, Qian-Nan YAO, Xue-Kun YANG, Yu-Long ZHAO, Ying-Huai QIANG, Chun-Guang REN. High performance perovskite solar cell based on passivation by a multifunctional amino acid derivative[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(2): 327-336.
doi:
10.11862/CJIC.2022.292
当前,由于CO2等温室气体大量排放引起的环境问题已经十分严峻。针对大气中CO2浓度过高的问题,将CO2转化为高附加值的化学品成为研究热点[1]。常见的CO2催化转化技术有化学转化、酶催化[2]、光催化[3]、电催化[4]等。其中电催化因其可利用可再生能源作为动力,且具有反应条件温和[5],反应过程可控,具备大规模应用潜力[6]等优势成为了研究热点。CO2是一种非极性、线性对称分子,化学性质稳定、还原难度高,又因为CO2水溶性低,所以存在催化活性低[7]、反应起始电位高[8]等问题,因此制备高活性、高稳定性和高产物选择性的催化剂成为关键。
目前,研究者已经研制出了许多优良的催化剂,包括金属催化剂[9-10]、单原子催化剂[11]、分子催化剂[12-13]等。其中,金属有机骨架(MOFs)是一种由有机配体和金属离子连接而成的骨架材料[14]。MOFs材料具有大的比表面积、可调节的孔洞结构和稳定的化学结构[15]。这些特性都有望促进其成为优良的电催化CO2还原反应(eCO2RR)催化剂。沸石咪唑盐骨架(ZIF-8)是MOFs的一个亚类[16],是由锌离子(Zn2+)和2-甲基咪唑(2-MIM)配体形成的四配位骨架结构[17]。ZIF-8材料中Zn2+和咪唑中的氮位点配位有利于CO2的吸附,推进反应的高效进行,甚至有望在低CO2浓度的实际气流中开展高选择性的捕获与转化[18]。但ZIF-8与大多数MOFs材料一样,自身导电性较差,限制了其在eCO2RR方面的应用[19]。目前,ZIF-8衍生复合催化材料在eCO2RR方面有着广泛研究[20-21],而对ZIF-8本征活性的研究还较少。Wang等通过研究发现,原始的ZIF-8在宽的电势窗口下,CO2转化为CO的选择性低于50%,并且电流密度低于10 mA·cm-2。在ZIF-8电催化活性的基础上,通过计算得到:由于ZIF-8中Zn2+的3d轨道被完全占据,eCO2RR的活性位点是咪唑配体上的sp2 C,因此Wang等通过掺杂供电子基配体邻二氮菲,调节了催化剂活性位点的电子结构,提高了产物选择性,使得产物CO的选择性在-1.1 V(vs RHE)电位下达到了90.57%,但整个反应过程中的电流密度仍低于10 mA·cm-2 [22]。Bao和Wang等将导电炭黑与ZIF-8混合,并用聚四氟乙烯(PTFE)在碳纸上涂覆一层疏水层,提高了催化剂的导电性和传质,疏水层有利于CO2在催化剂表面的传输并且降低析氢反应(HER)的影响,增强了eCO2RR的活性[23]。Lu课题组通过低温处理工艺破坏了ZIF-8金属中心与有机配体之间部分成键,形成不饱和金属位点,但保留其结构的完整性,提高了ZIF-8的导电性[24]。但ZIF基催化剂在反应过程中仍存在电流密度低、稳定性差等问题。因此,基于ZIF-8的本征活性,提高其导电性及催化活性和产物选择性,仍是亟需解决的问题。
碳纳米管(CNT)是一种具有优良导电、导热、疏水性能的介孔材料[25],可以为电子的转移提供通道,是支持各种催化剂很有前途的载体材料。例如,HKUST-1是一类铜基金属有机骨架材料,Anbia等将多壁碳纳米管(MWCNT)加入HKUST-1中,复合材料的CO2吸附能力显著增强[26]。由于ZIF-8与大多数MOFs材料一样,在水中稳定性差并且自身微孔结构限制了气体在孔隙内的传质。ZIF-8的微孔和CNT介孔形成多级孔结构,有望解决上述ZIF-8稳定性以及传质问题,还可以利用CNT自身的性质,增强电催化材料的导电性和疏水性,获得更好的eCO2RR性能。
我们通过调控金属离子与有机配体的物质的量之比,合成了4种不同粒径大小(X,nm)的ZIF-8材料(ZIF-8-X,X=500、200、100、50),对4种催化剂进行电化学测试后,得到催化性能相对较好的ZIF-8-50,通过调控ZIF-8-50在CNT上原位生长,设计构建了碳纳米管稳定金属有机骨架材料(ZIF-8-50@CNT)体系,进一步提高了ZIF-8催化材料的导电性能及其eCO2RR的活性与产物选择性。融合ZIF-8和CNT二者的优势,发展高活性、高选择性、高稳定性催化材料体系,有望制备高效的新一代eCO2RR材料。
根据文献得到了ZIF-8-50[27]。取0.41 g Zn(NO3)2·6H2O和0.82 g 2-MIM(物质的量之比为1:8)分别各自溶于40 mL甲醇中,搅拌20 min充分溶解,将2-MIM溶液与Zn(NO3)2·6H2O溶液混合,在室温下搅拌24 h。之后,将混合溶液静置24 h。将静置后的溶液进行离心处理,并用甲醇清洗3次,在真空干燥箱中60 ℃干燥12 h,得到ZIF-8-50。通过调控Zn(NO3)2·6H2O和2-MIM的物质的量之比为1∶1、1∶2、1∶4,分别得到了ZIF-8-500、ZIF-8-200、ZIF-8-100。
取100 mg商用碳纳米管(CNT,内径:5~12 nm,外径:30~50 nm,管长:10~20 μm)置于烧杯中,加入15 mL硝酸(HNO3)和5 mL硫酸(H2SO4),搅拌反应12 h。反应后的溶液通过抽滤、洗涤、干燥,收集得到表面氧化的CNT。氧化CNT表面含有富氧官能团,带有负电荷,有利于ZIF-8在表面原位生长[25]。
将100 mg氧化处理后的CNT置于装有40 mL甲醇的烧杯中,超声1 h使其均匀分散,加入20 mL含有0.41 g Zn(NO3)2·6H2O的甲醇溶液,搅拌6 h后,加入20 mL含有0.82 g的2-MIM的甲醇溶液,持续搅拌24 h。另外静置24 h后离心清洗,最后在60 ℃真空干燥箱中干燥12 h得到ZIF-8-50@CNT(图 1)。
采用X射线衍射仪(XRD,D8 Advanced)分析催化剂的物相组成,Cu Kα线为辐射源,波长0.154 06 nm,工作电压40 kV,工作电流40 mA,扫描速度为5 (°)·min-1,2θ范围为5°~80°。采用场发射扫描电子显微镜(SEM,JSM-7001F)对样品的形貌进行研究。采用高分辨透射电子显微镜(HRTEM,H-7800)观察样品的形貌和结构(加速电压100 kV)。采用X射线光电子能谱(XPS,AXIS)对样品进行定性和半定量分析,通过XPS谱图的峰位和峰形可以得到样品表面元素成分、化学态等信息,通过峰面积可以获得样品表面元素的含量。利用比表面测定仪(JW-BK200B)分析样品的N2吸附-脱附性质并计算比表面积、孔容积和孔径分布。
称量5 mg ZIF-8-X样品和2 mg炭黑置于5 mL离心管中,滴加3 mL乙醇和30 μL Nafion溶液(5%),超声1 h使样品分散均匀,制得催化剂油墨。
称量10 mg ZIF-8-50@CNT样品置于5 mL离心管中,滴加3 mL乙醇和30 μL Nafion溶液(5%),超声1 h使样品分散均匀,制得催化剂油墨。作为对照,采用表面氧化后的CNT作为载体,浸渍负载ZIF-8-50,得到ZIF-8-50/CNT。
将疏水碳纸裁成1 cm×2.5 cm大小,用铅笔在碳纸正反面高0.5 cm处画一道横线标记,将制得的催化剂均匀地滴涂在碳纸两侧,滴涂面积为1 cm2,晾干备用。
采用H型电解池,阳极为铂电极,阴极为催化剂电极,参比电极为Ag/AgCl(3.5 mol·L-1 KCl)电极,阴阳极反应室之间用Nafion117膜隔开;电解质溶液为0.5 mol·L-1 KHCO3溶液。
将H型电解池与电化学工作站(CHI1140C)和气相色谱仪(GC9790Ⅱ)相连。首先,向电解质溶液中通入CO2气体30 min,目的是使CO2气体在电解质溶液中饱和(pH=7.2)。在电化学测试前,我们对工作电极进行了80圈循环伏安(CV)扫描,使催化剂充分活化。利用电化学工作站对催化剂进行eCO2RR性能测试,测试中所有电位均相对于可逆氢电极(RHE),转换公式1如下:
|
(1) |
在0~-1.2 V内,以5 mV·s-1的扫速对催化剂进行线性扫描伏安(LSV)测试,得到的曲线为电流-电压曲线图,可以初步得到催化剂对CO2还原的活性。为了评估催化剂的真实催化性能,必须先得到电极的真实电化学面积。我们通过测试催化剂的双电层电容(Cdl),计算得到催化剂的电化学活性表面积(ECSA)。双电层电容是在选定的电势范围内(-0.35~-0.45 V)进行CV测试,得到一系列不同扫速的曲线,然后用该电位下的电流密度和扫描速率作图,得到一条直线,直线斜率即为双电层电容。双电层电容和ECSA之间成正比关系,因此可以通过双电层电容来比较不同催化剂之间ECSA的关系。ECSA可由下式2得到:
|
(2) |
其中Cs为标准电极的比电容,本文中使用的是平均值40 μL·cm-2。
比表面活性(SA)可以展现催化剂的内在活性,它是通过将电流密度归一化到电催化剂的比表面积估算比活性。比表面活性是每个活性位点活度的近似值,可以反映出催化剂的固有活性,因此是研究催化剂内在活性的可靠指标。催化剂的比表面活性可由下式3得到:
|
(3) |
MA为单位质量催化剂的电流密度。
在-0.9 V、100 000~1 Hz下对催化剂进行电化学阻抗(EIS)测试(CHI760e)。利用气相色谱对CO2还原产物CO和H2进行分析,其中CO用氢离子火焰检测器(FID)检测,H2用热导检测器(TCD)检测。2种产物通过法拉第效率(FE)来反映产物的相对含量。法拉第效率的计算公式4为:
|
(4) |
式中nX为CO2还原反应中得到一个产物分子所需要转移的电子数,F为法拉第常数,V为室温下CO2气体的流速,单位为mL·s-1,v为进入气相色谱仪的H2或CO的气体体积浓度,p0为环境压力,R为理想气体常数,T0为环境温度,Itotal为电池的稳定电流。
采用X射线衍射分析仪对所制备样品的晶相和结构进行了表征。ZIF-8-X、ZIF-8-50@CNT、ZIF-8-50/CNT样品的XRD图对比如图 2a所示。6个XRD图中都有4个宽的衍射峰,分别位于7.4°、10.4°、12.8°、18.0°,对应于ZIF-8-X、ZIF-8-50@CNT、ZIF-8-50/CNT样品中ZIF-8的(110)、(200)、(211)、(222)晶面,证明了ZIF-8-X的成功制备。值得注意的是,ZIF-8-50@CNT和ZIF-8-50/CNT都没有出现CNT在25.8°出现的特征峰。采用低压N2吸附-脱附法对CNT、ZIF-8-50和ZIF-8-50@CNT进行了Brunauer-Emmett-Teller(BET)比表面积分析(图 2b)。结果发现,ZIF-8-50样品曲线符合Ⅰ型等温线,CNT和ZIF-8-50@CNT样品曲线符合Ⅳ型等温线,ZIF-8-50@CNT吸附脱附等温线上出现的滞后环与CNT的介孔结构有关。根据测试结果,纯CNT、ZIF-8-50、ZIF-8-50@CNT的比表面积分别为79、1 322、995 m2·g-1。其中ZIF-8-50和ZIF-8-50@CNT都具有较大的比表面积,但CNT的存在会影响ZIF-8材料的比表面积,因此ZIF-8-50@CNT材料的比表面积有一定的减小[25]。ZIF-8-50、ZIF-8-50@CNT的平均微孔孔径分别为0.354、0.368 nm。图 2b中ZIF-8-50@CNT存在的4 nm左右的介孔结构与纯CNT的介孔结构相吻合。
SEM图像显示不同粒径大小ZIF-8-X的形貌,ZIF-8随机均匀分散,每个粒子都呈现规则的十二面体结构,形貌与其他文献中表述一致[19](图 3a~3d)。ZIF-8-50@CNT的SEM图像显示ZIF-8-50不均匀地生长在CNT表面,部分ZIF-8-50会出现部分团聚现象[24](图 3e)。图 3f和3g为ZIF-8-50和ZIF-8-50@CNT材料的低倍率透射电镜图像。从图 3f看到ZIF-8有着规则的六边形结构,从图 3g看到ZIF-8-50不均匀地生长在CNT表面。在0.5 mol·L-1 KHCO3电解质溶液中对纯CNT、ZIF-8-X和ZIF-8-50@CNT材料进行接触角测试实验,测试发现大粒径的ZIF-8材料具有亲水特性(图 3h),纯CNT材料接触角为122°,ZIF-8-50材料接触角为139°,ZIF-8-50@CNT材料的接触角为143°。复合之后材料的接触角有所增大,因此ZIF-8-50@CNT的疏水性有所增强。CNT和ZIF-8复合进一步提升了材料的疏水性,强疏水性有利于多孔材料在纳米甚至微米尺度上捕获一层气体,因此CO2在电极的气-液-固界面富集,促进CO2持续的电化学还原;且强疏水表面还能抑制竞争反应HER的发生,从而增强eCO2RR的性能[28]。
通过XPS研究合成的复合材料的化学成分和表面价键信息。图 4显示了Zn2p、C1s、N1s区域的XPS光谱和高分辨XPS光谱。在图 4a中,ZIF-8-50、ZIF-8-50@CNT的XPS光谱显示了C、N、Zn元素的存在。通过对谱图进行分析发现,ZIF-8-50@CNT中C的原子百分数(72.52%)明显高于ZIF-8-50中C的原子百分数(64.82%),这是由于CNT的引入,提高了C元素的含量。ZIF-8-50和ZIF-8-50@CNT样品C1s的高分辨结构谱图(图 4b)出现了C—C、C=C、C—N的特征峰,ZIF-8-50@CNT在287.0 eV出现的C—O特征峰是由于CNT被氧化,表面产生许多含氧官能团[29]。ZIF-8-50和ZIF-8-50@CNT样品中N1s的高分辨结构谱图(图 4c)在约399.0和401.1 eV出现2个峰,分别对应于N—C和N—Zn的特征峰。ZIF-8-50和ZIF-8-50@CNT样品中Zn2p的高分辨结构谱图(图 4d)在1 022.0和约1 045 eV出现2个峰,分别对应于Zn2p3/2和Zn2p1/2的特征峰,证明在ZIF-8原位生长在CNT表面时,Zn的状态没有发生变化。
催化剂的LSV曲线(图 5a)表明,通过原位生长制备的ZIF-8-50@CNT的起始电位为-0.55 V,通过浸渍负载制备的ZIF-8-50/CNT的起始电位为-0.7 V,ZIF-8-X(X=500、200、100、50)的起始电位约为-0.75 V。相比于其他5种催化剂,ZIF-8-50@CNT的起始电位明显降低。在测试电位0~-1.2 V,ZIF-8-X的电流密度都低于20 mA·cm-2,在-1.1 V电位下,ZIF-8-50@CNT的电流密度已经超过20 mA·cm-2。在不同电位下对6种催化剂进行电化学测试,通过气相色谱检测eCO2RR气相产物,通过1H NMR没有检测出液相产物。从图 5b中看到,在测试电位下,ZIF-8-X的CO的法拉第效率都低于55%,ZIF-8-50@CNT在较宽的电势范围内(-0.9~-1.2 V),CO的法拉第效率一直保持在80%以上。图 5c计算得到了6种催化剂的CO部分电流密度(jCO),在-0.8~-1.2 V下,ZIF-8-X的CO部分电流密度低于10 mA·cm-2;在-0.9 V下,ZIF-8-50@CNT的CO部分电流密度已经达到10 mA·cm-2。ZIF-8-50@CNT的H2法拉第效率低于20%(图 5d),说明CNT的加入抑制了析氢反应,有利于目标产物CO的产生。图 5e为通过计算得到的6种催化剂的双电层电容:ZIF-8-50@CNT((1.918±0.048) mF·cm-2)、ZIF-8/CNT((1.967±0.049) mF·cm-2)、ZIF-8-50((1.917±0.048) mF·cm-2)、ZIF-8-100((0.500 0±0.013) mF·cm-2)、ZIF-8-200((0.101 2±0.002 5) mF·cm-2)、ZIF-8-500((0.097 25±0.002 2) mF·cm-2)。EIS测试可以揭示催化剂的反应动力学过程,从图 5f中可以看到ZIF-8-50@CNT呈现出更小的半圆,说明ZIF-8-50@CNT在催化反应中电荷转移电阻更小(Rct=14.62 Ω)。图 5g为通过计算得到的6种催化剂的塔菲尔斜率:ZIF-8-50@CNT(136 mV·dec-1)、ZIF-8-50/CNT(266 mV·dec-1)、ZIF-8-50(271 mV·dec-1)、ZIF-8-100(270 mV·dec-1),ZIF-8-200(282 mV·dec-1)、ZIF-8-500(280 mV·dec-1)。图 5h为ZIF-8-50@CNT、ZIF-8-50/CNT、ZIF-8-50在-0.9~-1.2 V电位下的比表面活性,其中在-1.1 V电位下,ZIF-8-50@CNT的比表面活性达到ZIF-8-50比表面活性的3.5倍。电化学测试结果表明,ZIF-8-50原位生长在CNT表面提高了催化剂的导电性,同时复合材料的介孔结构加快了传质过程,使得CO2气体能更好地扩散到催化剂表面[29],有利于抑制析氢反应;且小粒径ZIF-8催化剂更有利于活性位点的暴露,由于ZIF-8-50和CNT之间的界面协同作用,ZIF-8-50@CNT相比其他5种催化剂有更快的初始电子转移过程[30]和更高的内在活性。这些因素共同提升了复合材料ZIF-8-50@CNT的eCO2RR性能。图 5i比较了本催化剂与其他文献中ZIF基催化剂的CO法拉第效率和CO部分电流密度。在-1.1 V电位下,ZIF-8-50 @CNT催化剂的CO部分电流密度为15.6 mA·cm-2,远高于其他ZIF基催化剂(jCO < 10 mA·cm-2)[20, 22-23, 30],并且CO的法拉第效率也保持在较高的水平。
为了进一步评估催化剂的eCO2RR性能,我们在-1.0 V电势下进行了稳定性测试,如图 6所示。可以看出,在10 h稳定性测试中,ZIF-8-50@CNT的电流密度保持相对稳定,没有明显波动,CO的法拉第效率保持在80%以上,整个过程中析氢反应得到很好的抑制,说明ZIF-8-50@CNT催化剂在较长时间电解过程中能够保持稳定的活性(图 6a)。ZIF-8-50材料在稳定性测试中,电流密度在2 h后就开始逐渐降低,且CO的法拉第效率很快就降到了很低的水平(图 6b)。为了探究2种催化剂稳定性不同的原因,我们将2种催化剂分别进行了不同时间的稳定性测试以及形貌分析。如图 7所示,在一开始的稳定性测试中2种催化剂的结构都没有改变,但在3 h时,ZIF-8-50催化剂的形貌已经开始发生改变,8 h时,ZIF-8-50的结构塌陷,而ZIF-8-50@CNT催化剂在8 h测试后结构仍然保留。这是由于CNT的加入,催化剂的疏水性得到提升,避免了催化剂在水溶液中的水解;并且ZIF-8原位生长在CNT上,ZIF-8的稳定性得到了提高。
我们在ZIF-8活性的基础上,通过简单的湿化学方法制备了几种不同ZIF-8催化剂,并将其用于eCO2RR。筛选了不同尺寸的ZIF-8材料,将优化的ZIF-8原位生长在CNT表面,提升了催化剂的导电性和疏水性,降低了反应的起始电位,提高了CO产物的选择性,增强了反应过程中的稳定性。在-0.9~-1.2 V电势窗口下,CO的法拉第效率一直保持在80%以上,并且在10 h稳定性测试中,催化剂活性保持稳定。相比于原始ZIF-8催化剂,eCO2RR性能得到很大的提升。本方法合成简便,有利于催化剂的大规模制备,并且为eCO2RR和其他催化领域提供了合理的策略。
Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible- light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131:6050-6051. doi: 10.1021/ja809598r
Cai B, Xing Y D, Yang Z, Zhang W H, Qiu J S. High performance hybrid solar cells sensitized by organolead halide perovskites[J]. Energy Environ. Sci., 2013,6:1480-1485. doi: 10.1039/c3ee40343b
Huang S, Shan H S, Xuan W F, Xu W J, Hu D N, Zhu L, Huang C, Sui W H, Xiao C J, Zhao Y L, Qiang Y H, Gu X Q, Song J, Zhou C. High-performance humidity sensor based on CsPdBr3 nanocrystals for noncontact sensing of hydromechanical characteristics of unsaturated soil[J]. Phys. Status Solidi-Rapid Res. Lett., 2022,162200017. doi: 10.1002/pssr.202200017
Li T T, Pan Y F, Wang Z, Xia Y D, Chen Y H, Huang W. Additive engineering for highly efficient organic - inorganic halide perovskite solar cells: Recent advances and perspectives[J]. J. Mater. Chem. A, 2017,5:12602-12652. doi: 10.1039/C7TA01798G
Zheng X P, Hou Y, Bao C X, Yin J, Yuan F L, Huang Z R, Song K P, Liu J K, Troughton J, Gasparini N, Zhou C, Lin Y B, Xue D J, Chen B, Johnston A K, Wei N, Hedhili M N, Wei M Y, Alsalloum A Y, Maity P, Turedi B, Yang C, Baran D, Anthopoulos T D, Han Y, Lu Z H, Mohammed O F, Gao F, Sargent E H, Bakr O M. Managing grains and interfaces via ligand anchoring enables 22.3% - efficiency inverted perovskite solar cells[J]. Nat. Energy, 2020,5:131-140. doi: 10.1038/s41560-019-0538-4
Chen Y, Yang Z, Wang S B, Zheng X J, Wu Y H, Yuan N Y, Zhang W H, Liu S Z. Design of an inorganic mesoporous hole- transporting layer for highly efficient and stable inverted perovskite solar cells[J]. Adv. Mater., 2018,301805660. doi: 10.1002/adma.201805660
Xia Y R, Zhao C, Zhao P Y, Mao L Y, Ding Y C, Hong D C, Tian Y X, Yan W S, Jin Z. Pseudohalide substitution and potassium doping in FA0.98K0.02Pb(SCN)2I for high-stability hole-conductor-free perovskite solar cells[J]. J. Power Sources, 2021,494229781. doi: 10.1016/j.jpowsour.2021.229781
YANG Z S, KE W F, WANG Y X, HUANG L Q, GUO P C, ZHU H. Preparation and characterization of hybrid perovskite (NH3C6H12NH3) CuCl4[J]. Chinese J. Inorg. Chem., 2017,33(9):1568-1572.
Liang J, Zhao P Y, Wang C X, Wang Y R, Hu Y, Zhu G Y, Ma L B, Liu J, Jin Z. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability[J]. J. Am. Chem. Soc., 2017,139:14009-14012. doi: 10.1021/jacs.7b07949
Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy Environ. Sci., 2014,7:982-988. doi: 10.1039/c3ee43822h
Hong D C, Zhao P Y, Du Y, Zhao C, Xia Y R, Wei Z H, Jin Z, Tian Y X. Inhibition of phase segregation in cesium lead mixed - halide perovskites by B-site doping[J]. iScience, 2020,23101415. doi: 10.1016/j.isci.2020.101415
Zhang H Y, Shi J J, Zhu L F, Luo Y H, Li D M, Wu H J, Meng Q B. Polystyrene stabilized perovskite component, grain and microstructure for improved efficiency and stability of planar solar cells[J]. Nano Energy, 2018,43:383-392. doi: 10.1016/j.nanoen.2017.11.024
Cho A N, Park N G. Impact of interfacial layers in perovskite solar cells[J]. ChemSusChem, 2017,10:3687-3704. doi: 10.1002/cssc.201701095
Park N G, Gratzel M, Miyasaka T, Zhu K, Emery K. Towards stable and commercially available perovskite solar cells[J]. Nat. Energy, 2016,116152. doi: 10.1038/nenergy.2016.152
Song J, Zhao L, Huang S, Yan X F, Qiu Q Y, Zhao Y L, Zhu L, Qiang Y H, Li H S, Li G R. A p - p+ homojunction enhanced hole transfer in inverted planar perovskite solar cells[J]. ChemSusChem, 2021,14:1396-1403. doi: 10.1002/cssc.202100083
Yu W, Yu S W, Zhang J, Liang W S, Wang X L, Guo X, Li C. Two-in-one additive-engineering strategy for improved air stability of planar perovskite solar cells[J]. Nano Energy, 2018,45:229-235. doi: 10.1016/j.nanoen.2017.12.041
Pazos-Outon L M, Xiao T P, Yablonovitch E. Fundamental efficiency limit of lead iodide perovskite solar cells[J]. J. Phys. Chem. Lett., 2018,9:1703-1711. doi: 10.1021/acs.jpclett.7b03054
Stranks S D. Nonradiative losses in metal halide perovskites[J]. ACS Energy Lett., 2017,2:1515-1525. doi: 10.1021/acsenergylett.7b00239
Yang J C, Tang W J, Yuan R H, Chen Y, Wang J, Wu Y H, Yin W J, Yuan N Y, Ding J N, Zhang W H. Defect mitigation using D-penicillamine for efficient methylammonium-free perovskite solar cells with high operational stability[J]. Chem. Sci., 2021,122050. doi: 10.1039/D0SC06354A
Chen B, Rudd P N, Yang S, Yuan Y B, Huang J S. Imperfections and their passivation in halide perovskite solar cells[J]. Chem. Soc. Rev., 2019,48:3842-3867. doi: 10.1039/C8CS00853A
LUO Y, ZHANG G L, MA S P, ZHU C T, CHEN T, ZHANG L, ZHU L, GUO X Y, YANG Y. Effect of bilayer SnO2 electron transport layer on the interfacial charge transport in perovskite solar cells[J]. Chinese J. Inorg. Chem., 2022,38(5):850-860.
Shan H S, Xuan W F, Li Z, Hu D N, Gu X Q, Huang S. Room temperature hydrogen sulfide sensor based on tributyltin oxide-functionalized perovskite CsPbBr3 quantum dots[J]. ACS Appl. Nano Mater., 2022,5:6801-6809. doi: 10.1021/acsanm.2c00791
Shao Y H, Xiao Z G, Bi C, Yuan Y B, Huang J S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells[J]. Nat. Commun., 2014,55784. doi: 10.1038/ncomms6784
Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith H J. Supramolecular halogen bond passivation of organic - inorganic halide perovskite solar cells[J]. Nano Lett., 2014,14:3247-3254. doi: 10.1021/nl500627x
Zheng X P, Chen B, Dai J, Fang Y J, Bai Y, Lin Y Z, Wei H T, Zeng X C, Huang J S. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations[J]. Nat. Energy, 2017,217102. doi: 10.1038/nenergy.2017.102
Yang S, Dai J, Yu Z H, Shao Y C, Zhou Y, Xiao X, Zeng X C, Huang J S. Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells[J]. J. Am. Chem. Soc., 2019,141:5781-5787. doi: 10.1021/jacs.8b13091
Braly I L, deQuilettes D W, Pazos-Outón L M, Burke S, Ziffer M W, Ginger D S, Hillhouse H W. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency[J]. Nat. Photonics, 2018,12355. doi: 10.1038/s41566-018-0154-z
Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M J, Jeon S, Ning Z J, McDowell J J, Kanjanaboos P, Sun J P, Lan X Z, Quan L N, Kim D H, Hill I G, Maksymovych P, Sargent E H. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes[J]. Nat. Commun., 2015,67081. doi: 10.1038/ncomms8081
Tan H R, Jain A, Voznyy O, Lan X Z, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H. Efficient and stable solution- processed planar perovskite solar cells via contact passivation[J]. Science, 2017,355:722-726. doi: 10.1126/science.aai9081
HOU W J, MA Y T, HAN G Y. Secondary crystallization and passivation of perovskite film induced by dithizone post-treatment[J]. Chinese J.Inorg. Chem., 2021,37(8):1414-1420.
Rajagopal A, Stoddard R J, Jo S B, Hillhouse H W, Jen A K. Overcoming the photovoltage plateau in large bandgap perovskite photovoltaics[J]. Nano Lett., 2018,18:3985-3993. doi: 10.1021/acs.nanolett.8b01480
Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N. Phenylalkylamine passivation of organolead halide perovskites enabling high - efficiency and air - stable photovoltaic cells[J]. Adv. Mater., 2016,28:9986-9992. doi: 10.1002/adma.201603062
Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W. Perovskite light - emitting diodes based on spontaneously formed submicrometre-scale structures[J]. Nature, 2018,562:249-253. doi: 10.1038/s41586-018-0576-2
Zhang W W, Lei X L, Liu J H, Dong J, Yan X W, Gao W, Dong H, Ran C X, Wu Z X. Efficient charge collection promoted by interface passivation using amino acid toward high performance perovskite solar cells[J]. Phys. Status Solidi-Rapid Res. Lett., 2018,131800505.
Choi M J, Lee Y S, Cho I H, Kim S S, Kim D H, Kwon S N, Na S I. Functional additives for high-performance inverted planar perovskite solar cells with exceeding 20% efficiency: Selective complexation of organic cations in precursors[J]. Nano Energy, 2020,71104639. doi: 10.1016/j.nanoen.2020.104639
Zhang W Y, He L, Tang D Y, Li X. Surfactant sodium dodecyl ben-zene sulfonate improves the efficiency and stability of air-processed perovskite solar cells with negligible hysteresis[J]. Solar RRL, 2020,42000376. doi: 10.1002/solr.202000376
Zhao L, Sun X W, Yao Q N, Huang S, Zhu L, Song J, Zhao Y L, Qiang Y H. Field-effect control in hole transport layer composed of Li: NiO/NiO for highly efficient inverted planar perovskite solar cells[J]. Adv. Mater. Interfaces, 2022,92101562. doi: 10.1002/admi.202101562
Cui Q P, Zhao L, Sun X W, Yao Q N, Huang S, Zhu L, Zhao Y L, Song J, Qiang Y H. Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr: NiOx bilayer hole transport layer[J]. Chin. Phys. B, 2022,31038801. doi: 10.1088/1674-1056/ac1fda
Qin Y S, Song J, Qiu Q Y, Liu Y, Zhao Y L, Zhu L, Qing Y H. High-quality NiO thin film by low - temperature spray combustion method for perovskite solar cells[J]. J. Alloy. Compd., 2019,810151970. doi: 10.1016/j.jallcom.2019.151970
Yun S C, Ma S, Kwon H C, Kim K, Jang G, Yang H, Moon J. Amino acid salt - driven planar hybrid perovskite solar cells with enhanced humidity stability[J]. Nano Energy, 2019,59:481-491. doi: 10.1016/j.nanoen.2019.02.064
Pretsch E, Bühlmann P, Badertscher M. Structure determination of organic compounds. Berlin: Springer-Verlag, 2000: 217
Abdelmageed G, Mackeen C, Hellier K, Jewell L, Seymour L, Tingwald M, Bridges F, Zhang J, Carter S. Effect of temperature on light induced degradation in methylammonium lead iodide perovskite thin films and solar cells[J]. Sol. Energy Mater. Sol. Cells, 2018,174:566-571. doi: 10.1016/j.solmat.2017.09.053
Zhu K P, Cong S, Lu Z, Lou Y H, He L, Li J M, Ding J N, Yuang N Y, Rümmeli M H, Zou G F. Enhanced perovskite solar cell performance via defect passivation with ethylamine alcohol chlorides additive[J]. J. Power Sources, 2019,428:82-87. doi: 10.1016/j.jpowsour.2019.04.056
Yuan S H, Qian F, Yang S M, Cai Y, Wang Q, Sun J, Liu Z K, Liu S Z. NbF5: A novel alpha - phase stabilizer for FA - based perovskite solar cells with high efficiency[J]. Adv. Funct. Mater., 2019,291807850. doi: 10.1002/adfm.201807850
Wu S F, Li Z, Zhang J, Liu T T, Zhu Z L, Jen A K Y. Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses[J]. Chem. Commun., 2019,55:4315-4318. doi: 10.1039/C9CC00016J
Song J, Qiu Q Y, Sun X W, Wang L L. Surface modification of perovskite film by an amino acid derivative for perovskite solar cell[J]. Org. Electron., 2022,108106598. doi: 10.1016/j.orgel.2022.106598
Zhang P Y, Chen J J, Song L X, Gu N X, Du P F, Chen X, Zha L Y, Chen W H, Xiong J. Passivation of perovskite surfaces using 2-hydroxyacetophenone to fabricate solar cells with over 20.7% efficiency under air environment[J]. Appl. Surf. Sci., 2022,598153842. doi: 10.1016/j.apsusc.2022.153842
Zhang M M, Hu W P, Shang Y B, Zhou W R, Zhang W F, Yang S F. Surface passivation of perovskite film by sodium toluenesulfonate for highly efficient solar cells[J]. Solar RRL, 2020,42000113. doi: 10.1002/solr.202000113
Jiang H, Yan Z, Zhao H, Yuan S H, Yang Z, Li J, Liu B, Niu T Q, Feng J S, Wang Q, Wang D P, Yang H Q, Liu Z K, Liu S F. Bifunctional hydroxylamine hydrochloride incorporated perovskite films for efficient and stable planar perovskite solar cells[J]. ACS Appl. Energy Mater., 2018,1:900-909. doi: 10.1021/acsaem.8b00060
Yang X Y, Luo D Y, Xiang Y R, Zhao L C, Anaya M, Shen Y L, Wu J, Yang W Q, Chiang Y H, Tu Y G, Su R, Hu Q, Yu H Y, Shao G S, Huang W, Russell T P, Gong Q H, Stranks S D, Zhang W, Zhu R. Buried interfaces in halide perovskite photovoltaics[J]. Adv. Mater., 2021,332006435. doi: 10.1002/adma.202006435
Hu J L, Xu X, Chen Y J, Wu S H, Wang Z, Wang Y S, Jiang X F, Cai B Y, Shi T T, Brabec C J, Mai Y H, Guo F. Overcoming photovoltage deficit via natural amino acid passivation for efficient perovskite solar cells and modules[J]. J. Mater. Chem. A, 2021,9:5857-5865. doi: 10.1039/D0TA12342K
Song J, Ren Y F, Gong S J, Zhao L, Xuan W F, Zhu L, Zhao Y L, Qiang Y H, Gao L L, Huang S. Performance enhancement of crystal silicon solar cell by a CsPbBr3 - Cs4PbBr6 perovskite quantum dot@ZnO/ethylene vinyl acetate copolymer downshifting composite film[J]. Solar RRL, 2022,62200336. doi: 10.1002/solr.202200336
Heo J, Im K, Lee H, Kim J, Im S. Ni, Ti-co-doped MoO2 nanoparticles with high stability and improved conductivity for hole transporting material in planar metal halide perovskite solar cells[J]. J. Ind. Eng. Chem., 2021,94:376-383. doi: 10.1016/j.jiec.2020.11.010
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nanocrystals of cesium lead halide perovskites (CsPbX 3, X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett., 2015,15:3692-3696. doi: 10.1021/nl5048779
De Roo J, Ibáñez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J, Van Driessche I, Kovalenko M, Hens Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals[J]. ACS Nano, 2016,10:2071-2081. doi: 10.1021/acsnano.5b06295
Lindblad R, Bi D, Park B W, Oscarsson J, Gorgoi M, Siegbahn H, Odelius M, Johansson E M J, Rensmo H. Electronic structure of TiO2/CH 3NH3PbI3 perovskite solar cell interfaces[J]. J. Phys. Chem. Lett., 2014,5:648-653. doi: 10.1021/jz402749f
Singh T, Miyasaka T. Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity[J]. Adv. Energy Mater., 2018,81700677. doi: 10.1002/aenm.201700677
Jia J B, Dong J, Wu J H, Wei H M, Cao B Q. Combustion procedure deposited SnO2 electron transport layers for high efficient perovskite solar cells[J]. J. Alloy. Compd., 2020,844156032. doi: 10.1016/j.jallcom.2020.156032
Liu X P, Wu J H, Guo Q Y, Yang Y Q, Luo H, Liu Q Z, Wang X B, He X, Huang M L, Lan Z. Pyrrole: An additive for improving the efficiency and stability of perovskite solar cells[J]. J. Mater. Chem. A, 2019,7:11764-11770. doi: 10.1039/C9TA02916H
Nguyen M, Yoon S H, Kim K S. Hydrothermally fabricated TiO2 heterostructure boosts efficiency of MAPbI3 perovskite solar cells[J]. J. Ind. Eng. Chem., 2022,106:382-392. doi: 10.1016/j.jiec.2021.11.013
Duan J L, Wang Y D, Yang X Y, Tang Q W. Alkyl-chain-regulated charge transfer in fluorescent inorganic CsPbBr3 perovskite solar cells[J]. Angew. Chem. Int. Ed., 2020,59:4391-4395. doi: 10.1002/anie.202000199
Song J, Yang Y, Zhao Y L, Che M, Zhu L, Gu X Q, Qiang Y H. Morphology modification of perovskite film by a simple post-treatment process in perovskite solar cell[J]. Mater. Sci. Eng. B, 2017,217:18-25. doi: 10.1016/j.mseb.2017.01.004
Song J, Li S P, Zhao Y L, Yuan J, Zhu Y, Fang Y, Zhu L, Gu X Q, Qiang Y H. Performance enhancement of perovskite solar cells by doping TiO2 blocking layer with group VB elements[J]. J. Alloy. Compd., 2017,694:1232-1238. doi: 10.1016/j.jallcom.2016.10.106
Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible- light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131:6050-6051. doi: 10.1021/ja809598r
Cai B, Xing Y D, Yang Z, Zhang W H, Qiu J S. High performance hybrid solar cells sensitized by organolead halide perovskites[J]. Energy Environ. Sci., 2013,6:1480-1485. doi: 10.1039/c3ee40343b
Huang S, Shan H S, Xuan W F, Xu W J, Hu D N, Zhu L, Huang C, Sui W H, Xiao C J, Zhao Y L, Qiang Y H, Gu X Q, Song J, Zhou C. High-performance humidity sensor based on CsPdBr3 nanocrystals for noncontact sensing of hydromechanical characteristics of unsaturated soil[J]. Phys. Status Solidi-Rapid Res. Lett., 2022,162200017. doi: 10.1002/pssr.202200017
Li T T, Pan Y F, Wang Z, Xia Y D, Chen Y H, Huang W. Additive engineering for highly efficient organic - inorganic halide perovskite solar cells: Recent advances and perspectives[J]. J. Mater. Chem. A, 2017,5:12602-12652. doi: 10.1039/C7TA01798G
Zheng X P, Hou Y, Bao C X, Yin J, Yuan F L, Huang Z R, Song K P, Liu J K, Troughton J, Gasparini N, Zhou C, Lin Y B, Xue D J, Chen B, Johnston A K, Wei N, Hedhili M N, Wei M Y, Alsalloum A Y, Maity P, Turedi B, Yang C, Baran D, Anthopoulos T D, Han Y, Lu Z H, Mohammed O F, Gao F, Sargent E H, Bakr O M. Managing grains and interfaces via ligand anchoring enables 22.3% - efficiency inverted perovskite solar cells[J]. Nat. Energy, 2020,5:131-140. doi: 10.1038/s41560-019-0538-4
Chen Y, Yang Z, Wang S B, Zheng X J, Wu Y H, Yuan N Y, Zhang W H, Liu S Z. Design of an inorganic mesoporous hole- transporting layer for highly efficient and stable inverted perovskite solar cells[J]. Adv. Mater., 2018,301805660. doi: 10.1002/adma.201805660
Xia Y R, Zhao C, Zhao P Y, Mao L Y, Ding Y C, Hong D C, Tian Y X, Yan W S, Jin Z. Pseudohalide substitution and potassium doping in FA0.98K0.02Pb(SCN)2I for high-stability hole-conductor-free perovskite solar cells[J]. J. Power Sources, 2021,494229781. doi: 10.1016/j.jpowsour.2021.229781
YANG Z S, KE W F, WANG Y X, HUANG L Q, GUO P C, ZHU H. Preparation and characterization of hybrid perovskite (NH3C6H12NH3) CuCl4[J]. Chinese J. Inorg. Chem., 2017,33(9):1568-1572.
Liang J, Zhao P Y, Wang C X, Wang Y R, Hu Y, Zhu G Y, Ma L B, Liu J, Jin Z. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability[J]. J. Am. Chem. Soc., 2017,139:14009-14012. doi: 10.1021/jacs.7b07949
Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy Environ. Sci., 2014,7:982-988. doi: 10.1039/c3ee43822h
Hong D C, Zhao P Y, Du Y, Zhao C, Xia Y R, Wei Z H, Jin Z, Tian Y X. Inhibition of phase segregation in cesium lead mixed - halide perovskites by B-site doping[J]. iScience, 2020,23101415. doi: 10.1016/j.isci.2020.101415
Zhang H Y, Shi J J, Zhu L F, Luo Y H, Li D M, Wu H J, Meng Q B. Polystyrene stabilized perovskite component, grain and microstructure for improved efficiency and stability of planar solar cells[J]. Nano Energy, 2018,43:383-392. doi: 10.1016/j.nanoen.2017.11.024
Cho A N, Park N G. Impact of interfacial layers in perovskite solar cells[J]. ChemSusChem, 2017,10:3687-3704. doi: 10.1002/cssc.201701095
Park N G, Gratzel M, Miyasaka T, Zhu K, Emery K. Towards stable and commercially available perovskite solar cells[J]. Nat. Energy, 2016,116152. doi: 10.1038/nenergy.2016.152
Song J, Zhao L, Huang S, Yan X F, Qiu Q Y, Zhao Y L, Zhu L, Qiang Y H, Li H S, Li G R. A p - p+ homojunction enhanced hole transfer in inverted planar perovskite solar cells[J]. ChemSusChem, 2021,14:1396-1403. doi: 10.1002/cssc.202100083
Yu W, Yu S W, Zhang J, Liang W S, Wang X L, Guo X, Li C. Two-in-one additive-engineering strategy for improved air stability of planar perovskite solar cells[J]. Nano Energy, 2018,45:229-235. doi: 10.1016/j.nanoen.2017.12.041
Pazos-Outon L M, Xiao T P, Yablonovitch E. Fundamental efficiency limit of lead iodide perovskite solar cells[J]. J. Phys. Chem. Lett., 2018,9:1703-1711. doi: 10.1021/acs.jpclett.7b03054
Stranks S D. Nonradiative losses in metal halide perovskites[J]. ACS Energy Lett., 2017,2:1515-1525. doi: 10.1021/acsenergylett.7b00239
Yang J C, Tang W J, Yuan R H, Chen Y, Wang J, Wu Y H, Yin W J, Yuan N Y, Ding J N, Zhang W H. Defect mitigation using D-penicillamine for efficient methylammonium-free perovskite solar cells with high operational stability[J]. Chem. Sci., 2021,122050. doi: 10.1039/D0SC06354A
Chen B, Rudd P N, Yang S, Yuan Y B, Huang J S. Imperfections and their passivation in halide perovskite solar cells[J]. Chem. Soc. Rev., 2019,48:3842-3867. doi: 10.1039/C8CS00853A
LUO Y, ZHANG G L, MA S P, ZHU C T, CHEN T, ZHANG L, ZHU L, GUO X Y, YANG Y. Effect of bilayer SnO2 electron transport layer on the interfacial charge transport in perovskite solar cells[J]. Chinese J. Inorg. Chem., 2022,38(5):850-860.
Shan H S, Xuan W F, Li Z, Hu D N, Gu X Q, Huang S. Room temperature hydrogen sulfide sensor based on tributyltin oxide-functionalized perovskite CsPbBr3 quantum dots[J]. ACS Appl. Nano Mater., 2022,5:6801-6809. doi: 10.1021/acsanm.2c00791
Shao Y H, Xiao Z G, Bi C, Yuan Y B, Huang J S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells[J]. Nat. Commun., 2014,55784. doi: 10.1038/ncomms6784
Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith H J. Supramolecular halogen bond passivation of organic - inorganic halide perovskite solar cells[J]. Nano Lett., 2014,14:3247-3254. doi: 10.1021/nl500627x
Zheng X P, Chen B, Dai J, Fang Y J, Bai Y, Lin Y Z, Wei H T, Zeng X C, Huang J S. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations[J]. Nat. Energy, 2017,217102. doi: 10.1038/nenergy.2017.102
Yang S, Dai J, Yu Z H, Shao Y C, Zhou Y, Xiao X, Zeng X C, Huang J S. Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells[J]. J. Am. Chem. Soc., 2019,141:5781-5787. doi: 10.1021/jacs.8b13091
Braly I L, deQuilettes D W, Pazos-Outón L M, Burke S, Ziffer M W, Ginger D S, Hillhouse H W. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency[J]. Nat. Photonics, 2018,12355. doi: 10.1038/s41566-018-0154-z
Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M J, Jeon S, Ning Z J, McDowell J J, Kanjanaboos P, Sun J P, Lan X Z, Quan L N, Kim D H, Hill I G, Maksymovych P, Sargent E H. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes[J]. Nat. Commun., 2015,67081. doi: 10.1038/ncomms8081
Tan H R, Jain A, Voznyy O, Lan X Z, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H. Efficient and stable solution- processed planar perovskite solar cells via contact passivation[J]. Science, 2017,355:722-726. doi: 10.1126/science.aai9081
HOU W J, MA Y T, HAN G Y. Secondary crystallization and passivation of perovskite film induced by dithizone post-treatment[J]. Chinese J.Inorg. Chem., 2021,37(8):1414-1420.
Rajagopal A, Stoddard R J, Jo S B, Hillhouse H W, Jen A K. Overcoming the photovoltage plateau in large bandgap perovskite photovoltaics[J]. Nano Lett., 2018,18:3985-3993. doi: 10.1021/acs.nanolett.8b01480
Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N. Phenylalkylamine passivation of organolead halide perovskites enabling high - efficiency and air - stable photovoltaic cells[J]. Adv. Mater., 2016,28:9986-9992. doi: 10.1002/adma.201603062
Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W. Perovskite light - emitting diodes based on spontaneously formed submicrometre-scale structures[J]. Nature, 2018,562:249-253. doi: 10.1038/s41586-018-0576-2
Zhang W W, Lei X L, Liu J H, Dong J, Yan X W, Gao W, Dong H, Ran C X, Wu Z X. Efficient charge collection promoted by interface passivation using amino acid toward high performance perovskite solar cells[J]. Phys. Status Solidi-Rapid Res. Lett., 2018,131800505.
Choi M J, Lee Y S, Cho I H, Kim S S, Kim D H, Kwon S N, Na S I. Functional additives for high-performance inverted planar perovskite solar cells with exceeding 20% efficiency: Selective complexation of organic cations in precursors[J]. Nano Energy, 2020,71104639. doi: 10.1016/j.nanoen.2020.104639
Zhang W Y, He L, Tang D Y, Li X. Surfactant sodium dodecyl ben-zene sulfonate improves the efficiency and stability of air-processed perovskite solar cells with negligible hysteresis[J]. Solar RRL, 2020,42000376. doi: 10.1002/solr.202000376
Zhao L, Sun X W, Yao Q N, Huang S, Zhu L, Song J, Zhao Y L, Qiang Y H. Field-effect control in hole transport layer composed of Li: NiO/NiO for highly efficient inverted planar perovskite solar cells[J]. Adv. Mater. Interfaces, 2022,92101562. doi: 10.1002/admi.202101562
Cui Q P, Zhao L, Sun X W, Yao Q N, Huang S, Zhu L, Zhao Y L, Song J, Qiang Y H. Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr: NiOx bilayer hole transport layer[J]. Chin. Phys. B, 2022,31038801. doi: 10.1088/1674-1056/ac1fda
Qin Y S, Song J, Qiu Q Y, Liu Y, Zhao Y L, Zhu L, Qing Y H. High-quality NiO thin film by low - temperature spray combustion method for perovskite solar cells[J]. J. Alloy. Compd., 2019,810151970. doi: 10.1016/j.jallcom.2019.151970
Yun S C, Ma S, Kwon H C, Kim K, Jang G, Yang H, Moon J. Amino acid salt - driven planar hybrid perovskite solar cells with enhanced humidity stability[J]. Nano Energy, 2019,59:481-491. doi: 10.1016/j.nanoen.2019.02.064
Pretsch E, Bühlmann P, Badertscher M. Structure determination of organic compounds. Berlin: Springer-Verlag, 2000: 217
Abdelmageed G, Mackeen C, Hellier K, Jewell L, Seymour L, Tingwald M, Bridges F, Zhang J, Carter S. Effect of temperature on light induced degradation in methylammonium lead iodide perovskite thin films and solar cells[J]. Sol. Energy Mater. Sol. Cells, 2018,174:566-571. doi: 10.1016/j.solmat.2017.09.053
Zhu K P, Cong S, Lu Z, Lou Y H, He L, Li J M, Ding J N, Yuang N Y, Rümmeli M H, Zou G F. Enhanced perovskite solar cell performance via defect passivation with ethylamine alcohol chlorides additive[J]. J. Power Sources, 2019,428:82-87. doi: 10.1016/j.jpowsour.2019.04.056
Yuan S H, Qian F, Yang S M, Cai Y, Wang Q, Sun J, Liu Z K, Liu S Z. NbF5: A novel alpha - phase stabilizer for FA - based perovskite solar cells with high efficiency[J]. Adv. Funct. Mater., 2019,291807850. doi: 10.1002/adfm.201807850
Wu S F, Li Z, Zhang J, Liu T T, Zhu Z L, Jen A K Y. Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses[J]. Chem. Commun., 2019,55:4315-4318. doi: 10.1039/C9CC00016J
Song J, Qiu Q Y, Sun X W, Wang L L. Surface modification of perovskite film by an amino acid derivative for perovskite solar cell[J]. Org. Electron., 2022,108106598. doi: 10.1016/j.orgel.2022.106598
Zhang P Y, Chen J J, Song L X, Gu N X, Du P F, Chen X, Zha L Y, Chen W H, Xiong J. Passivation of perovskite surfaces using 2-hydroxyacetophenone to fabricate solar cells with over 20.7% efficiency under air environment[J]. Appl. Surf. Sci., 2022,598153842. doi: 10.1016/j.apsusc.2022.153842
Zhang M M, Hu W P, Shang Y B, Zhou W R, Zhang W F, Yang S F. Surface passivation of perovskite film by sodium toluenesulfonate for highly efficient solar cells[J]. Solar RRL, 2020,42000113. doi: 10.1002/solr.202000113
Jiang H, Yan Z, Zhao H, Yuan S H, Yang Z, Li J, Liu B, Niu T Q, Feng J S, Wang Q, Wang D P, Yang H Q, Liu Z K, Liu S F. Bifunctional hydroxylamine hydrochloride incorporated perovskite films for efficient and stable planar perovskite solar cells[J]. ACS Appl. Energy Mater., 2018,1:900-909. doi: 10.1021/acsaem.8b00060
Yang X Y, Luo D Y, Xiang Y R, Zhao L C, Anaya M, Shen Y L, Wu J, Yang W Q, Chiang Y H, Tu Y G, Su R, Hu Q, Yu H Y, Shao G S, Huang W, Russell T P, Gong Q H, Stranks S D, Zhang W, Zhu R. Buried interfaces in halide perovskite photovoltaics[J]. Adv. Mater., 2021,332006435. doi: 10.1002/adma.202006435
Hu J L, Xu X, Chen Y J, Wu S H, Wang Z, Wang Y S, Jiang X F, Cai B Y, Shi T T, Brabec C J, Mai Y H, Guo F. Overcoming photovoltage deficit via natural amino acid passivation for efficient perovskite solar cells and modules[J]. J. Mater. Chem. A, 2021,9:5857-5865. doi: 10.1039/D0TA12342K
Song J, Ren Y F, Gong S J, Zhao L, Xuan W F, Zhu L, Zhao Y L, Qiang Y H, Gao L L, Huang S. Performance enhancement of crystal silicon solar cell by a CsPbBr3 - Cs4PbBr6 perovskite quantum dot@ZnO/ethylene vinyl acetate copolymer downshifting composite film[J]. Solar RRL, 2022,62200336. doi: 10.1002/solr.202200336
Heo J, Im K, Lee H, Kim J, Im S. Ni, Ti-co-doped MoO2 nanoparticles with high stability and improved conductivity for hole transporting material in planar metal halide perovskite solar cells[J]. J. Ind. Eng. Chem., 2021,94:376-383. doi: 10.1016/j.jiec.2020.11.010
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nanocrystals of cesium lead halide perovskites (CsPbX 3, X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett., 2015,15:3692-3696. doi: 10.1021/nl5048779
De Roo J, Ibáñez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J, Van Driessche I, Kovalenko M, Hens Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals[J]. ACS Nano, 2016,10:2071-2081. doi: 10.1021/acsnano.5b06295
Lindblad R, Bi D, Park B W, Oscarsson J, Gorgoi M, Siegbahn H, Odelius M, Johansson E M J, Rensmo H. Electronic structure of TiO2/CH 3NH3PbI3 perovskite solar cell interfaces[J]. J. Phys. Chem. Lett., 2014,5:648-653. doi: 10.1021/jz402749f
Singh T, Miyasaka T. Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity[J]. Adv. Energy Mater., 2018,81700677. doi: 10.1002/aenm.201700677
Jia J B, Dong J, Wu J H, Wei H M, Cao B Q. Combustion procedure deposited SnO2 electron transport layers for high efficient perovskite solar cells[J]. J. Alloy. Compd., 2020,844156032. doi: 10.1016/j.jallcom.2020.156032
Liu X P, Wu J H, Guo Q Y, Yang Y Q, Luo H, Liu Q Z, Wang X B, He X, Huang M L, Lan Z. Pyrrole: An additive for improving the efficiency and stability of perovskite solar cells[J]. J. Mater. Chem. A, 2019,7:11764-11770. doi: 10.1039/C9TA02916H
Nguyen M, Yoon S H, Kim K S. Hydrothermally fabricated TiO2 heterostructure boosts efficiency of MAPbI3 perovskite solar cells[J]. J. Ind. Eng. Chem., 2022,106:382-392. doi: 10.1016/j.jiec.2021.11.013
Duan J L, Wang Y D, Yang X Y, Tang Q W. Alkyl-chain-regulated charge transfer in fluorescent inorganic CsPbBr3 perovskite solar cells[J]. Angew. Chem. Int. Ed., 2020,59:4391-4395. doi: 10.1002/anie.202000199
Song J, Yang Y, Zhao Y L, Che M, Zhu L, Gu X Q, Qiang Y H. Morphology modification of perovskite film by a simple post-treatment process in perovskite solar cell[J]. Mater. Sci. Eng. B, 2017,217:18-25. doi: 10.1016/j.mseb.2017.01.004
Song J, Li S P, Zhao Y L, Yuan J, Zhu Y, Fang Y, Zhu L, Gu X Q, Qiang Y H. Performance enhancement of perovskite solar cells by doping TiO2 blocking layer with group VB elements[J]. J. Alloy. Compd., 2017,694:1232-1238. doi: 10.1016/j.jallcom.2016.10.106
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
Yao Ma , Xin Zhao , Hongxu Chen , Wei Wei , Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107