Citation: Jian SONG, Xing-Zhou SU, Qian-Nan YAO, Xue-Kun YANG, Yu-Long ZHAO, Ying-Huai QIANG, Chun-Guang REN. High performance perovskite solar cell based on passivation by a multifunctional amino acid derivative[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 327-336. doi: 10.11862/CJIC.2022.292 shu

High performance perovskite solar cell based on passivation by a multifunctional amino acid derivative

Figures(4)

  • Herein, we proposed a facial method to passivate surface defects on perovskite film by an amino acid derivative, Fmoc-Ile-OH molecule, which contains multifunctional groups, including carboxyl, amino, and Fmoc protecting group (with benzene ring). These functional groups exhibit a synergistic effect in improving perovskite film quality and stability. Specifically, we find that this modification could decrease the content of PbI2 impurity and enlarge the particle size of perovskite film. Moreover, the optical and interface carrier transport properties were improved apparently. The better diode ideality factors, lower trap-filled limit voltages, and higher carrier recombination resistance for modified perovskite solar cells all demonstrated that Fmoc-Ile-OH could effectively passivate surface defects in perovskite films. Finally, we obtain a device with high conversion efficiency, 21.09%, which is much better than the control one, 18.00%.
  • 加载中
    1. [1]

      Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible- light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131:6050-6051. doi: 10.1021/ja809598r

    2. [2]

      Cai B, Xing Y D, Yang Z, Zhang W H, Qiu J S. High performance hybrid solar cells sensitized by organolead halide perovskites[J]. Energy Environ. Sci., 2013,6:1480-1485. doi: 10.1039/c3ee40343b

    3. [3]

      Huang S, Shan H S, Xuan W F, Xu W J, Hu D N, Zhu L, Huang C, Sui W H, Xiao C J, Zhao Y L, Qiang Y H, Gu X Q, Song J, Zhou C. High-performance humidity sensor based on CsPdBr3 nanocrystals for noncontact sensing of hydromechanical characteristics of unsaturated soil[J]. Phys. Status Solidi-Rapid Res. Lett., 2022,162200017. doi: 10.1002/pssr.202200017

    4. [4]

      Li T T, Pan Y F, Wang Z, Xia Y D, Chen Y H, Huang W. Additive engineering for highly efficient organic - inorganic halide perovskite solar cells: Recent advances and perspectives[J]. J. Mater. Chem. A, 2017,5:12602-12652. doi: 10.1039/C7TA01798G

    5. [5]

      Zheng X P, Hou Y, Bao C X, Yin J, Yuan F L, Huang Z R, Song K P, Liu J K, Troughton J, Gasparini N, Zhou C, Lin Y B, Xue D J, Chen B, Johnston A K, Wei N, Hedhili M N, Wei M Y, Alsalloum A Y, Maity P, Turedi B, Yang C, Baran D, Anthopoulos T D, Han Y, Lu Z H, Mohammed O F, Gao F, Sargent E H, Bakr O M. Managing grains and interfaces via ligand anchoring enables 22.3% - efficiency inverted perovskite solar cells[J]. Nat. Energy, 2020,5:131-140. doi: 10.1038/s41560-019-0538-4

    6. [6]

      Chen Y, Yang Z, Wang S B, Zheng X J, Wu Y H, Yuan N Y, Zhang W H, Liu S Z. Design of an inorganic mesoporous hole- transporting layer for highly efficient and stable inverted perovskite solar cells[J]. Adv. Mater., 2018,301805660. doi: 10.1002/adma.201805660

    7. [7]

      Xia Y R, Zhao C, Zhao P Y, Mao L Y, Ding Y C, Hong D C, Tian Y X, Yan W S, Jin Z. Pseudohalide substitution and potassium doping in FA0.98K0.02Pb(SCN)2I for high-stability hole-conductor-free perovskite solar cells[J]. J. Power Sources, 2021,494229781. doi: 10.1016/j.jpowsour.2021.229781

    8. [8]

      YANG Z S, KE W F, WANG Y X, HUANG L Q, GUO P C, ZHU H. Preparation and characterization of hybrid perovskite (NH3C6H12NH3) CuCl4[J]. Chinese J. Inorg. Chem., 2017,33(9):1568-1572.  

    9. [9]

      Liang J, Zhao P Y, Wang C X, Wang Y R, Hu Y, Zhu G Y, Ma L B, Liu J, Jin Z. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability[J]. J. Am. Chem. Soc., 2017,139:14009-14012. doi: 10.1021/jacs.7b07949

    10. [10]

      Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy Environ. Sci., 2014,7:982-988. doi: 10.1039/c3ee43822h

    11. [11]

      Hong D C, Zhao P Y, Du Y, Zhao C, Xia Y R, Wei Z H, Jin Z, Tian Y X. Inhibition of phase segregation in cesium lead mixed - halide perovskites by B-site doping[J]. iScience, 2020,23101415. doi: 10.1016/j.isci.2020.101415

    12. [12]

      Zhang H Y, Shi J J, Zhu L F, Luo Y H, Li D M, Wu H J, Meng Q B. Polystyrene stabilized perovskite component, grain and microstructure for improved efficiency and stability of planar solar cells[J]. Nano Energy, 2018,43:383-392. doi: 10.1016/j.nanoen.2017.11.024

    13. [13]

      Cho A N, Park N G. Impact of interfacial layers in perovskite solar cells[J]. ChemSusChem, 2017,10:3687-3704. doi: 10.1002/cssc.201701095

    14. [14]

      Park N G, Gratzel M, Miyasaka T, Zhu K, Emery K. Towards stable and commercially available perovskite solar cells[J]. Nat. Energy, 2016,116152. doi: 10.1038/nenergy.2016.152

    15. [15]

      Song J, Zhao L, Huang S, Yan X F, Qiu Q Y, Zhao Y L, Zhu L, Qiang Y H, Li H S, Li G R. A p - p+ homojunction enhanced hole transfer in inverted planar perovskite solar cells[J]. ChemSusChem, 2021,14:1396-1403. doi: 10.1002/cssc.202100083

    16. [16]

      Yu W, Yu S W, Zhang J, Liang W S, Wang X L, Guo X, Li C. Two-in-one additive-engineering strategy for improved air stability of planar perovskite solar cells[J]. Nano Energy, 2018,45:229-235. doi: 10.1016/j.nanoen.2017.12.041

    17. [17]

      Pazos-Outon L M, Xiao T P, Yablonovitch E. Fundamental efficiency limit of lead iodide perovskite solar cells[J]. J. Phys. Chem. Lett., 2018,9:1703-1711. doi: 10.1021/acs.jpclett.7b03054

    18. [18]

      Stranks S D. Nonradiative losses in metal halide perovskites[J]. ACS Energy Lett., 2017,2:1515-1525. doi: 10.1021/acsenergylett.7b00239

    19. [19]

      Yang J C, Tang W J, Yuan R H, Chen Y, Wang J, Wu Y H, Yin W J, Yuan N Y, Ding J N, Zhang W H. Defect mitigation using D-penicillamine for efficient methylammonium-free perovskite solar cells with high operational stability[J]. Chem. Sci., 2021,122050. doi: 10.1039/D0SC06354A

    20. [20]

      Chen B, Rudd P N, Yang S, Yuan Y B, Huang J S. Imperfections and their passivation in halide perovskite solar cells[J]. Chem. Soc. Rev., 2019,48:3842-3867. doi: 10.1039/C8CS00853A

    21. [21]

      LUO Y, ZHANG G L, MA S P, ZHU C T, CHEN T, ZHANG L, ZHU L, GUO X Y, YANG Y. Effect of bilayer SnO2 electron transport layer on the interfacial charge transport in perovskite solar cells[J]. Chinese J. Inorg. Chem., 2022,38(5):850-860.  

    22. [22]

      Shan H S, Xuan W F, Li Z, Hu D N, Gu X Q, Huang S. Room temperature hydrogen sulfide sensor based on tributyltin oxide-functionalized perovskite CsPbBr3 quantum dots[J]. ACS Appl. Nano Mater., 2022,5:6801-6809. doi: 10.1021/acsanm.2c00791

    23. [23]

      Shao Y H, Xiao Z G, Bi C, Yuan Y B, Huang J S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells[J]. Nat. Commun., 2014,55784. doi: 10.1038/ncomms6784

    24. [24]

      Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith H J. Supramolecular halogen bond passivation of organic - inorganic halide perovskite solar cells[J]. Nano Lett., 2014,14:3247-3254. doi: 10.1021/nl500627x

    25. [25]

      Zheng X P, Chen B, Dai J, Fang Y J, Bai Y, Lin Y Z, Wei H T, Zeng X C, Huang J S. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations[J]. Nat. Energy, 2017,217102. doi: 10.1038/nenergy.2017.102

    26. [26]

      Yang S, Dai J, Yu Z H, Shao Y C, Zhou Y, Xiao X, Zeng X C, Huang J S. Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells[J]. J. Am. Chem. Soc., 2019,141:5781-5787. doi: 10.1021/jacs.8b13091

    27. [27]

      Braly I L, deQuilettes D W, Pazos-Outón L M, Burke S, Ziffer M W, Ginger D S, Hillhouse H W. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency[J]. Nat. Photonics, 2018,12355. doi: 10.1038/s41566-018-0154-z

    28. [28]

      Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M J, Jeon S, Ning Z J, McDowell J J, Kanjanaboos P, Sun J P, Lan X Z, Quan L N, Kim D H, Hill I G, Maksymovych P, Sargent E H. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes[J]. Nat. Commun., 2015,67081. doi: 10.1038/ncomms8081

    29. [29]

      Tan H R, Jain A, Voznyy O, Lan X Z, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H. Efficient and stable solution- processed planar perovskite solar cells via contact passivation[J]. Science, 2017,355:722-726. doi: 10.1126/science.aai9081

    30. [30]

      HOU W J, MA Y T, HAN G Y. Secondary crystallization and passivation of perovskite film induced by dithizone post-treatment[J]. Chinese J.Inorg. Chem., 2021,37(8):1414-1420.  

    31. [31]

      Rajagopal A, Stoddard R J, Jo S B, Hillhouse H W, Jen A K. Overcoming the photovoltage plateau in large bandgap perovskite photovoltaics[J]. Nano Lett., 2018,18:3985-3993. doi: 10.1021/acs.nanolett.8b01480

    32. [32]

      Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N. Phenylalkylamine passivation of organolead halide perovskites enabling high - efficiency and air - stable photovoltaic cells[J]. Adv. Mater., 2016,28:9986-9992. doi: 10.1002/adma.201603062

    33. [33]

      Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W. Perovskite light - emitting diodes based on spontaneously formed submicrometre-scale structures[J]. Nature, 2018,562:249-253. doi: 10.1038/s41586-018-0576-2

    34. [34]

      Zhang W W, Lei X L, Liu J H, Dong J, Yan X W, Gao W, Dong H, Ran C X, Wu Z X. Efficient charge collection promoted by interface passivation using amino acid toward high performance perovskite solar cells[J]. Phys. Status Solidi-Rapid Res. Lett., 2018,131800505.

    35. [35]

      Choi M J, Lee Y S, Cho I H, Kim S S, Kim D H, Kwon S N, Na S I. Functional additives for high-performance inverted planar perovskite solar cells with exceeding 20% efficiency: Selective complexation of organic cations in precursors[J]. Nano Energy, 2020,71104639. doi: 10.1016/j.nanoen.2020.104639

    36. [36]

      Zhang W Y, He L, Tang D Y, Li X. Surfactant sodium dodecyl ben-zene sulfonate improves the efficiency and stability of air-processed perovskite solar cells with negligible hysteresis[J]. Solar RRL, 2020,42000376. doi: 10.1002/solr.202000376

    37. [37]

      Zhao L, Sun X W, Yao Q N, Huang S, Zhu L, Song J, Zhao Y L, Qiang Y H. Field-effect control in hole transport layer composed of Li: NiO/NiO for highly efficient inverted planar perovskite solar cells[J]. Adv. Mater. Interfaces, 2022,92101562. doi: 10.1002/admi.202101562

    38. [38]

      Cui Q P, Zhao L, Sun X W, Yao Q N, Huang S, Zhu L, Zhao Y L, Song J, Qiang Y H. Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr: NiOx bilayer hole transport layer[J]. Chin. Phys. B, 2022,31038801. doi: 10.1088/1674-1056/ac1fda

    39. [39]

      Qin Y S, Song J, Qiu Q Y, Liu Y, Zhao Y L, Zhu L, Qing Y H. High-quality NiO thin film by low - temperature spray combustion method for perovskite solar cells[J]. J. Alloy. Compd., 2019,810151970. doi: 10.1016/j.jallcom.2019.151970

    40. [40]

      Yun S C, Ma S, Kwon H C, Kim K, Jang G, Yang H, Moon J. Amino acid salt - driven planar hybrid perovskite solar cells with enhanced humidity stability[J]. Nano Energy, 2019,59:481-491. doi: 10.1016/j.nanoen.2019.02.064

    41. [41]

      Pretsch E, Bühlmann P, Badertscher M. Structure determination of organic compounds. Berlin: Springer-Verlag, 2000: 217

    42. [42]

      Abdelmageed G, Mackeen C, Hellier K, Jewell L, Seymour L, Tingwald M, Bridges F, Zhang J, Carter S. Effect of temperature on light induced degradation in methylammonium lead iodide perovskite thin films and solar cells[J]. Sol. Energy Mater. Sol. Cells, 2018,174:566-571. doi: 10.1016/j.solmat.2017.09.053

    43. [43]

      Zhu K P, Cong S, Lu Z, Lou Y H, He L, Li J M, Ding J N, Yuang N Y, Rümmeli M H, Zou G F. Enhanced perovskite solar cell performance via defect passivation with ethylamine alcohol chlorides additive[J]. J. Power Sources, 2019,428:82-87. doi: 10.1016/j.jpowsour.2019.04.056

    44. [44]

      Yuan S H, Qian F, Yang S M, Cai Y, Wang Q, Sun J, Liu Z K, Liu S Z. NbF5: A novel alpha - phase stabilizer for FA - based perovskite solar cells with high efficiency[J]. Adv. Funct. Mater., 2019,291807850. doi: 10.1002/adfm.201807850

    45. [45]

      Wu S F, Li Z, Zhang J, Liu T T, Zhu Z L, Jen A K Y. Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses[J]. Chem. Commun., 2019,55:4315-4318. doi: 10.1039/C9CC00016J

    46. [46]

      Song J, Qiu Q Y, Sun X W, Wang L L. Surface modification of perovskite film by an amino acid derivative for perovskite solar cell[J]. Org. Electron., 2022,108106598. doi: 10.1016/j.orgel.2022.106598

    47. [47]

      Zhang P Y, Chen J J, Song L X, Gu N X, Du P F, Chen X, Zha L Y, Chen W H, Xiong J. Passivation of perovskite surfaces using 2-hydroxyacetophenone to fabricate solar cells with over 20.7% efficiency under air environment[J]. Appl. Surf. Sci., 2022,598153842. doi: 10.1016/j.apsusc.2022.153842

    48. [48]

      Zhang M M, Hu W P, Shang Y B, Zhou W R, Zhang W F, Yang S F. Surface passivation of perovskite film by sodium toluenesulfonate for highly efficient solar cells[J]. Solar RRL, 2020,42000113. doi: 10.1002/solr.202000113

    49. [49]

      Jiang H, Yan Z, Zhao H, Yuan S H, Yang Z, Li J, Liu B, Niu T Q, Feng J S, Wang Q, Wang D P, Yang H Q, Liu Z K, Liu S F. Bifunctional hydroxylamine hydrochloride incorporated perovskite films for efficient and stable planar perovskite solar cells[J]. ACS Appl. Energy Mater., 2018,1:900-909. doi: 10.1021/acsaem.8b00060

    50. [50]

      Yang X Y, Luo D Y, Xiang Y R, Zhao L C, Anaya M, Shen Y L, Wu J, Yang W Q, Chiang Y H, Tu Y G, Su R, Hu Q, Yu H Y, Shao G S, Huang W, Russell T P, Gong Q H, Stranks S D, Zhang W, Zhu R. Buried interfaces in halide perovskite photovoltaics[J]. Adv. Mater., 2021,332006435. doi: 10.1002/adma.202006435

    51. [51]

      Hu J L, Xu X, Chen Y J, Wu S H, Wang Z, Wang Y S, Jiang X F, Cai B Y, Shi T T, Brabec C J, Mai Y H, Guo F. Overcoming photovoltage deficit via natural amino acid passivation for efficient perovskite solar cells and modules[J]. J. Mater. Chem. A, 2021,9:5857-5865. doi: 10.1039/D0TA12342K

    52. [52]

      Song J, Ren Y F, Gong S J, Zhao L, Xuan W F, Zhu L, Zhao Y L, Qiang Y H, Gao L L, Huang S. Performance enhancement of crystal silicon solar cell by a CsPbBr3 - Cs4PbBr6 perovskite quantum dot@ZnO/ethylene vinyl acetate copolymer downshifting composite film[J]. Solar RRL, 2022,62200336. doi: 10.1002/solr.202200336

    53. [53]

      Heo J, Im K, Lee H, Kim J, Im S. Ni, Ti-co-doped MoO2 nanoparticles with high stability and improved conductivity for hole transporting material in planar metal halide perovskite solar cells[J]. J. Ind. Eng. Chem., 2021,94:376-383. doi: 10.1016/j.jiec.2020.11.010

    54. [54]

      Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nanocrystals of cesium lead halide perovskites (CsPbX 3, X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett., 2015,15:3692-3696. doi: 10.1021/nl5048779

    55. [55]

      De Roo J, Ibáñez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J, Van Driessche I, Kovalenko M, Hens Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals[J]. ACS Nano, 2016,10:2071-2081. doi: 10.1021/acsnano.5b06295

    56. [56]

      Lindblad R, Bi D, Park B W, Oscarsson J, Gorgoi M, Siegbahn H, Odelius M, Johansson E M J, Rensmo H. Electronic structure of TiO2/CH 3NH3PbI3 perovskite solar cell interfaces[J]. J. Phys. Chem. Lett., 2014,5:648-653. doi: 10.1021/jz402749f

    57. [57]

      Singh T, Miyasaka T. Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity[J]. Adv. Energy Mater., 2018,81700677. doi: 10.1002/aenm.201700677

    58. [58]

      Jia J B, Dong J, Wu J H, Wei H M, Cao B Q. Combustion procedure deposited SnO2 electron transport layers for high efficient perovskite solar cells[J]. J. Alloy. Compd., 2020,844156032. doi: 10.1016/j.jallcom.2020.156032

    59. [59]

      Liu X P, Wu J H, Guo Q Y, Yang Y Q, Luo H, Liu Q Z, Wang X B, He X, Huang M L, Lan Z. Pyrrole: An additive for improving the efficiency and stability of perovskite solar cells[J]. J. Mater. Chem. A, 2019,7:11764-11770. doi: 10.1039/C9TA02916H

    60. [60]

      Nguyen M, Yoon S H, Kim K S. Hydrothermally fabricated TiO2 heterostructure boosts efficiency of MAPbI3 perovskite solar cells[J]. J. Ind. Eng. Chem., 2022,106:382-392. doi: 10.1016/j.jiec.2021.11.013

    61. [61]

      Duan J L, Wang Y D, Yang X Y, Tang Q W. Alkyl-chain-regulated charge transfer in fluorescent inorganic CsPbBr3 perovskite solar cells[J]. Angew. Chem. Int. Ed., 2020,59:4391-4395. doi: 10.1002/anie.202000199

    62. [62]

      Song J, Yang Y, Zhao Y L, Che M, Zhu L, Gu X Q, Qiang Y H. Morphology modification of perovskite film by a simple post-treatment process in perovskite solar cell[J]. Mater. Sci. Eng. B, 2017,217:18-25. doi: 10.1016/j.mseb.2017.01.004

    63. [63]

      Song J, Li S P, Zhao Y L, Yuan J, Zhu Y, Fang Y, Zhu L, Gu X Q, Qiang Y H. Performance enhancement of perovskite solar cells by doping TiO2 blocking layer with group VB elements[J]. J. Alloy. Compd., 2017,694:1232-1238. doi: 10.1016/j.jallcom.2016.10.106

  • 加载中
    1. [1]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    2. [2]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    3. [3]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    4. [4]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    7. [7]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    8. [8]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    11. [11]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    14. [14]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    18. [18]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    19. [19]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    20. [20]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

Metrics
  • PDF Downloads(13)
  • Abstract views(1282)
  • HTML views(249)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return