Recycling FePO4·2H2O from waste LiFePO4 powders and formation mechanisms of the impurities during precipitation process
- Corresponding author: Jun TAN, tanjun@jihualab.ac.cn
Citation: Ling HUANG, Cheng-Zhi ZHANG, Jun TAN, Sui-Min LI. Recycling FePO4·2H2O from waste LiFePO4 powders and formation mechanisms of the impurities during precipitation process[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 357-366. doi: 10.11862/CJIC.2022.288
Wang W, Wu Y F. An overview of recycling and treatment of spent LFP batteries in China[J]. Resour. Conserv. Recycl., 2017,127:233-243. doi: 10.1016/j.resconrec.2017.08.019
Liu P W, Zhang Y N, Dong P, Zhang Y J, Meng Q, Zhou S Y, Yang X, Zhang M Y, Yang X. Direct regeneration of spent LFP cathode materials with pre-oxidation and V-doping[J]. J. Alloy. Compd., 2021,860157909. doi: 10.1016/j.jallcom.2020.157909
Gaogong Lithium Battery Research Institute (GGⅡ). Research and analysis report on cathode materials for lithium battery in China, 2021. https://www.gg-lb.com/art-44605-yj.html
Sun Q F, Li X L, Zhang H Z, Song D W, Shi X X, Song J S, Li C L, Zhang L Q. Resynthesizing LFP/C materials from the recycled cathode via a green full-solid route[J]. J. Alloy. Compd., 2020,818153292. doi: 10.1016/j.jallcom.2019.153292
Li H Y, Ye H, Sun M C, Chen W J. Process for recycle of spent lithium iron phosphate battery via a selective leaching-precipitation method[J]. J. Cent. South Univ., 2020,27(11):3239-3248. doi: 10.1007/s11771-020-4543-3
He K, Zhang Z Y, Zhang F S. A green process for phosphorus recov-ery from spent LFP batteries by transformation of delithiated LFP crystal into NaFeS2[J]. J. Hazard. Mater., 2020,395122614. doi: 10.1016/j.jhazmat.2020.122614
Dai Y, Xu Z D, Hua D, Gu H N, Wang N. Theoretical-molar Fe3+ recovering lithium from spent LFP batteries: An acid-free, efficient, and selective process[J]. J. Hazard. Mater., 2020,396122707. doi: 10.1016/j.jhazmat.2020.122707
Li H, Xing S Z, Liu Y, Li F J, Guo H, Kuang G. Recovery of lithium, iron, and phosphorus from spent LFP batteries using stoichiometric sulfuric acid leaching system[J]. ACS Sustain. Chem. Eng., 2017,5(9):8017-8024. doi: 10.1021/acssuschemeng.7b01594
Yang Y X, Meng X Q, Cao H B, Lin X, Liu C M, Sun Y, Zhang Y, Sun Z. Selective recovery of lithium from spent lithium iron phosphate batteries: A sustainable process[J]. Green Chem., 2018,20(13):3121-3133. doi: 10.1039/C7GC03376A
Fan E S, Li L, Zhang X X, Bian Y F, Xue Q, Wu J W, Wu F, Chen R J. Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach[J]. ACS Sustain. Chem. Eng., 2018,6(8):11029-11035. doi: 10.1021/acssuschemeng.8b02503
Kumar J, Shen X, Li B, Liu H Z, Zhao J M. Selective recovery of Li and FePO4 from spent LFP cathode scraps by organic acids and the properties of the regenerated LFP[J]. Waste Manage., 2020,113:32-40. doi: 10.1016/j.wasman.2020.05.046
Institute of rare metals, Guangdong academy of sciences. A method for synthesis iron phosphate for battery materials from spent lithium iron phosphate batteries: CN201811327545.8. 2018-11-08.
He L H, Zhao Z W, Liu X H, Chen A L, Si X F. Thermodynamics analysis of LFP precipitation from Li-Fe(Ⅱ)-P-H2O system at 298 K[J]. Trans. Nonferrous Met. Soc. China, 2012,22(7):1766-1770. doi: 10.1016/S1003-6326(11)61385-X
ZHAO Z W, LIU X H. Thermodynamics analysis of Li-Fe-P-H2O system[J]. The Chinese Journal of Nonferrous Metals, 2006,16(7):1257-1263.
Gal'perin Y L, Kosmynin B P. The crystalline structure of polyvinyli-denefluoride[J]. Polym. Sci. U.S.S.R., 1969,11(7):1624-1629. doi: 10.1016/0032-3950(69)90199-3
Churikov A V, Ivanishchev A V, Ushakov A V, Gamayunova I M, Leenson I A. Thermodynamics of LFP solid-phase synthesis using iron(Ⅱ)oxalate and ammonium dihydrophospate as precursors[J]. J.Chem. Eng. Data, 2013,58(6):1747-1759. doi: 10.1021/je400183k
Nriagu J O. Stability of vivianite and ion-pair formation in the system Fe3(PO4)2-H3PO4-H2O[J]. Geochim. Cosmochim. Acta, 1972,36(4):459-470. doi: 10.1016/0016-7037(72)90035-X
ZHAO Z W, LIANG X X, LIU X H, HE L H, CHEN X Y, SI X F, CHEN A L. Thermodynamics analysis of Li-extraction from brine using FePO4 ion-sieve[J]. The Chinese Journal of Nonferrous Metals, 2013,23(2):559-567.
Speight J G. Lang's handbook of chemistry. 6th ed. Los Angeles: McGraw-Hill, 2004: 1.253-1.261
Lide D R. CRC Handbook of chemistry and physics. 77th ed. Florida: CRC Press, 2019.
JING Q K. Basic research on wet chemical recovery and regeneration of typical cathode materials of lithium⁃ion batteries. Beijing: Univer-sity of Science and Technology Beijing, 2020: 33-38
Tremaine P R, Leblanc J C. The solubility of magnetite and the hydrolysis and oxidation of Fe2+ in water to 300℃[J]. J. Solution Chem., 1980,9(6):415-442. doi: 10.1007/BF00645517
YANG M. Dephosphorization mechanism of the raw and as ⁃ roasted Huiming high phosphorus limonite through sulfuric acid leaching. Beijing: Institute of Process Engineering Chinese Academy of Science, 2015: 44-45
HG/T 4701-2014. Iron phosphate for battery materials. China Indus-try Standards. 2015-6-1.
Šušić M V, Minić D M. Electric and electrochemical properties of solid LiH2PO4[J]. Solid State Ionics, 1981,2(4):309-314. doi: 10.1016/0167-2738(81)90032-1
Wurm C, Morcrette M, Rousse G, Dupont L, Masquelier C. Lithium insertion/extraction into/from LiMX2O7 compositions (M=Fe, V; X= P, As) prepared via a solution method[J]. Chem. Mater., 2002,14(6):2701-2710. doi: 10.1021/cm020168e
Gabelica-Robert M, Goreaud M, Labbe P, Raveau B. The pyrophos-phate NaFeP2O7: A cage structure[J]. J. Solid State Chem., 1982,45(3):389-395. doi: 10.1016/0022-4596(82)90184-0
Lou W B, Zhang Y, Zhang Y, Zheng S L, Sun P, Wang X J, Li J Z, Qiao S, Zhang Y, Wenzel M, Weigand J J. Leaching performance of Al-bearing spent LFP cathode powder in H2SO4 aqueous solution[J]. Trans. Nonferrous Met. Soc. China, 2021,31(3):817-831. doi: 10.1016/S1003-6326(21)65541-3
Zheng R J, Zhao L, Wang W H, Liu Y L, Ma Q X, Mu D Y, Li R H, Dai C S. Optimized Li and Fe recovery from spent lithium-ion batter-ies via a solution-precipitation method[J]. RSC Adv., 2016,6(49):43613-43625. doi: 10.1039/C6RA05477C
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
Biao Fang , Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Tao Long , Peng Chen , Bin Feng , Caili Yang , Kairong Wang , Yulei Wang , Can Chen , Yaping Wang , Ruotong Li , Meng Wu , Minhuan Lan , Wei Kong Pang , Jian-Fang Wu , Yuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
Xiaoxing Ji , Xiaojuan Li , Chenggang Wang , Gang Zhao , Hongxia Bu , Xijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064