Citation: Ling HUANG, Cheng-Zhi ZHANG, Jun TAN, Sui-Min LI. Recycling FePO4·2H2O from waste LiFePO4 powders and formation mechanisms of the impurities during precipitation process[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 357-366. doi: 10.11862/CJIC.2022.288 shu

Recycling FePO4·2H2O from waste LiFePO4 powders and formation mechanisms of the impurities during precipitation process

  • Corresponding author: Jun TAN, tanjun@jihualab.ac.cn
  • Received Date: 9 September 2022
    Revised Date: 18 November 2022

Figures(4)

  • Applying waste LiFePO4 powders as raw material, the FePO4·2H2O precursor was effectively recycled through chemical precipitation. Thereafter, the formation mechanisms of the impurities were discussed. The potential (φ)-pH diagram of the Fe-P-Li-H2O system was investigated and the result demonstrated that FePO4·2H2O could form at a temperature of 298-363 K under a pH value of 0-5.0 by precipitation. The experiment results indicated that the Fe3PO7 phase started to form through the reaction of Fe(OH)3 and FePO4·2H2O during the sintering process. When the molar ratio of Fe and P (nFenP) was 1∶1, pH=1.5-2.2, some Fe3+ ions will form Fe(OH)3, and the yield coefficient increased with the pH and temperature. This is because the solubility product constant (Ksp) of Fe(OH)3 was much less than the one of FePO4·2H2O, suggesting that the precipitate rate of Fe(OH)3 was faster than FePO4·2H2O. Based on thermodynamic principles, aging may be an effective way to convert Fe(OH)3 into FePO4 ·2H2O according to the φ-pH diagram of the Fe-P-Li-H2O system. Unfortunately, the rate of Fe(OH)3 conversion was slowed, resulting in some Fe(OH)3 in precipitation. Therefore, low pH value and temperature are essential to avoid Fe(OH)3 generation during the co-precipitation process. Also, when nFenP=1∶2, some H3PO4 could react with NaOH to form NaH2PO4, which would further react with FePO4·2H2O to produce NaFeP2O7 during the sintering process. At 333 K, the equimolar ratio of co-precipitation precursor FePO4·2H2O can be obtained by adjusting the pH value at 1.5, matching the molar ratio of 1∶1 of Fe to P. The purity of this as-prepared FePO4·2H2O was 99.97%. Besides, the synthesized LiFePO4 which used this FePO4·2H2O as a precursor exhibited a reversible capacity of 154.1 mAh·g-1 and excellent capacity retention of 96.79% after 100 cycles at 0.2C (1C=180 mA·g-1). FePO4·2H2O obtained from waste LiFePO4 powders can be used as precursor to synthesize LiFePO4 cathode material, which greatly improves the economic effi-ciency of recycling the spent LiFePO4 battery.
  • 加载中
    1. [1]

      Wang W, Wu Y F. An overview of recycling and treatment of spent LFP batteries in China[J]. Resour. Conserv. Recycl., 2017,127:233-243. doi: 10.1016/j.resconrec.2017.08.019

    2. [2]

      Liu P W, Zhang Y N, Dong P, Zhang Y J, Meng Q, Zhou S Y, Yang X, Zhang M Y, Yang X. Direct regeneration of spent LFP cathode materials with pre-oxidation and V-doping[J]. J. Alloy. Compd., 2021,860157909. doi: 10.1016/j.jallcom.2020.157909

    3. [3]

      Gaogong Lithium Battery Research Institute (GGⅡ). Research and analysis report on cathode materials for lithium battery in China, 2021. https://www.gg-lb.com/art-44605-yj.html

    4. [4]

      Sun Q F, Li X L, Zhang H Z, Song D W, Shi X X, Song J S, Li C L, Zhang L Q. Resynthesizing LFP/C materials from the recycled cathode via a green full-solid route[J]. J. Alloy. Compd., 2020,818153292. doi: 10.1016/j.jallcom.2019.153292

    5. [5]

      Li H Y, Ye H, Sun M C, Chen W J. Process for recycle of spent lithium iron phosphate battery via a selective leaching-precipitation method[J]. J. Cent. South Univ., 2020,27(11):3239-3248. doi: 10.1007/s11771-020-4543-3

    6. [6]

      He K, Zhang Z Y, Zhang F S. A green process for phosphorus recov-ery from spent LFP batteries by transformation of delithiated LFP crystal into NaFeS2[J]. J. Hazard. Mater., 2020,395122614. doi: 10.1016/j.jhazmat.2020.122614

    7. [7]

      Dai Y, Xu Z D, Hua D, Gu H N, Wang N. Theoretical-molar Fe3+ recovering lithium from spent LFP batteries: An acid-free, efficient, and selective process[J]. J. Hazard. Mater., 2020,396122707. doi: 10.1016/j.jhazmat.2020.122707

    8. [8]

      Li H, Xing S Z, Liu Y, Li F J, Guo H, Kuang G. Recovery of lithium, iron, and phosphorus from spent LFP batteries using stoichiometric sulfuric acid leaching system[J]. ACS Sustain. Chem. Eng., 2017,5(9):8017-8024. doi: 10.1021/acssuschemeng.7b01594

    9. [9]

      Yang Y X, Meng X Q, Cao H B, Lin X, Liu C M, Sun Y, Zhang Y, Sun Z. Selective recovery of lithium from spent lithium iron phosphate batteries: A sustainable process[J]. Green Chem., 2018,20(13):3121-3133. doi: 10.1039/C7GC03376A

    10. [10]

      Fan E S, Li L, Zhang X X, Bian Y F, Xue Q, Wu J W, Wu F, Chen R J. Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach[J]. ACS Sustain. Chem. Eng., 2018,6(8):11029-11035. doi: 10.1021/acssuschemeng.8b02503

    11. [11]

      Kumar J, Shen X, Li B, Liu H Z, Zhao J M. Selective recovery of Li and FePO4 from spent LFP cathode scraps by organic acids and the properties of the regenerated LFP[J]. Waste Manage., 2020,113:32-40. doi: 10.1016/j.wasman.2020.05.046

    12. [12]

      Institute of rare metals, Guangdong academy of sciences. A method for synthesis iron phosphate for battery materials from spent lithium iron phosphate batteries: CN201811327545.8. 2018-11-08.

    13. [13]

      He L H, Zhao Z W, Liu X H, Chen A L, Si X F. Thermodynamics analysis of LFP precipitation from Li-Fe(Ⅱ)-P-H2O system at 298 K[J]. Trans. Nonferrous Met. Soc. China, 2012,22(7):1766-1770. doi: 10.1016/S1003-6326(11)61385-X

    14. [14]

      ZHAO Z W, LIU X H. Thermodynamics analysis of Li-Fe-P-H2O system[J]. The Chinese Journal of Nonferrous Metals, 2006,16(7):1257-1263.  

    15. [15]

      Gal'perin Y L, Kosmynin B P. The crystalline structure of polyvinyli-denefluoride[J]. Polym. Sci. U.S.S.R., 1969,11(7):1624-1629. doi: 10.1016/0032-3950(69)90199-3

    16. [16]

      Churikov A V, Ivanishchev A V, Ushakov A V, Gamayunova I M, Leenson I A. Thermodynamics of LFP solid-phase synthesis using iron(Ⅱ)oxalate and ammonium dihydrophospate as precursors[J]. J.Chem. Eng. Data, 2013,58(6):1747-1759. doi: 10.1021/je400183k

    17. [17]

      Nriagu J O. Stability of vivianite and ion-pair formation in the system Fe3(PO4)2-H3PO4-H2O[J]. Geochim. Cosmochim. Acta, 1972,36(4):459-470. doi: 10.1016/0016-7037(72)90035-X

    18. [18]

      ZHAO Z W, LIANG X X, LIU X H, HE L H, CHEN X Y, SI X F, CHEN A L. Thermodynamics analysis of Li-extraction from brine using FePO4 ion-sieve[J]. The Chinese Journal of Nonferrous Metals, 2013,23(2):559-567.  

    19. [19]

      Speight J G. Lang's handbook of chemistry. 6th ed. Los Angeles: McGraw-Hill, 2004: 1.253-1.261

    20. [20]

      Lide D R. CRC Handbook of chemistry and physics. 77th ed. Florida: CRC Press, 2019.

    21. [21]

      JING Q K. Basic research on wet chemical recovery and regeneration of typical cathode materials of lithium⁃ion batteries. Beijing: Univer-sity of Science and Technology Beijing, 2020: 33-38

    22. [22]

      Tremaine P R, Leblanc J C. The solubility of magnetite and the hydrolysis and oxidation of Fe2+ in water to 300℃[J]. J. Solution Chem., 1980,9(6):415-442. doi: 10.1007/BF00645517

    23. [23]

      YANG M. Dephosphorization mechanism of the raw and as ⁃ roasted Huiming high phosphorus limonite through sulfuric acid leaching. Beijing: Institute of Process Engineering Chinese Academy of Science, 2015: 44-45

    24. [24]

      HG/T 4701-2014. Iron phosphate for battery materials. China Indus-try Standards. 2015-6-1.

    25. [25]

      Šušić M V, Minić D M. Electric and electrochemical properties of solid LiH2PO4[J]. Solid State Ionics, 1981,2(4):309-314. doi: 10.1016/0167-2738(81)90032-1

    26. [26]

      Wurm C, Morcrette M, Rousse G, Dupont L, Masquelier C. Lithium insertion/extraction into/from LiMX2O7 compositions (M=Fe, V; X= P, As) prepared via a solution method[J]. Chem. Mater., 2002,14(6):2701-2710. doi: 10.1021/cm020168e

    27. [27]

      Gabelica-Robert M, Goreaud M, Labbe P, Raveau B. The pyrophos-phate NaFeP2O7: A cage structure[J]. J. Solid State Chem., 1982,45(3):389-395. doi: 10.1016/0022-4596(82)90184-0

    28. [28]

      Lou W B, Zhang Y, Zhang Y, Zheng S L, Sun P, Wang X J, Li J Z, Qiao S, Zhang Y, Wenzel M, Weigand J J. Leaching performance of Al-bearing spent LFP cathode powder in H2SO4 aqueous solution[J]. Trans. Nonferrous Met. Soc. China, 2021,31(3):817-831. doi: 10.1016/S1003-6326(21)65541-3

    29. [29]

      Zheng R J, Zhao L, Wang W H, Liu Y L, Ma Q X, Mu D Y, Li R H, Dai C S. Optimized Li and Fe recovery from spent lithium-ion batter-ies via a solution-precipitation method[J]. RSC Adv., 2016,6(49):43613-43625. doi: 10.1039/C6RA05477C

  • 加载中
    1. [1]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    2. [2]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    3. [3]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    4. [4]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    5. [5]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    6. [6]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    7. [7]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    8. [8]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    9. [9]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    10. [10]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    11. [11]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    12. [12]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    13. [13]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    14. [14]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    15. [15]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    16. [16]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    17. [17]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    18. [18]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    19. [19]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

Metrics
  • PDF Downloads(13)
  • Abstract views(554)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return