Citation: Zong-Yi HUANG, Yi-Fan ZHENG, E YANG, Xu-Chun SONG. Preparation and photocatalytic performance of BiOIO3/BiOCl heterojunction with dominated facet[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 263-271. doi: 10.11862/CJIC.2022.279 shu

Preparation and photocatalytic performance of BiOIO3/BiOCl heterojunction with dominated facet

  • Corresponding author: Xu-Chun SONG, songxuchunfj@163.com
  • Received Date: 17 July 2022
    Revised Date: 24 October 2022

Figures(9)

  • The BiOIO3/BiOCl heterojunctions with different dominated facet, BiOIO3/{110}BiOCl and BiOIO3/{001} BiOCl, were prepared through facile solvothermal/hydrothermal methods with ethylene glycol/deionized water as solvents. As - prepared BiOIO3/BiOCl photocatalysts were characterized by X - ray diffraction, scanning electron microscope, energy-dispersive spectroscopy, and UV-Vis diffuse reflectance spectra. The photocatalytic activity of BiOIO3/BiOCl heterojunctions was evaluated by photo - catalytically decomposing rhodamine B and phenol in an aqueous solution under visible light irradiation. The results showed that 25% BiOIO3/{110}BiOCl heterojunctions exhibited the highest photocatalytic efficiency. The degradation of RhB over 25% BiOIO3/{110}BiOCl was 98.7% after 15 min of light irradiation. And 100% phenol can be degraded after irradiation for 150 min. The better photocatalytic performance of BiOIO3/{110}BiOCl may be attributed to the strong absorption of the visible light, the het- erojunction structure, and the efficient separation of photo-generated carriers benefiting from the dominated (110) facet of BiOCl. The superoxide radicals (·O2-) and holes (h+) are the main active species in the photocatalytic process. Moreover, a reasonable mechanism for enhanced photocatalytic performance was also discussed based on theexperimental results.
  • 加载中
    1. [1]

      XU S C, ZHU T Z, QIAO Y, BAI X J, TANG N, ZHENG C M. Fabrication of Z - scheme BiVO4/GO/g - C3N4 photocatalyst with efficient visible-light photocatalytic performance[J]. J. Inorg. Mater., 2020,35(7):839-846.

    2. [2]

      ZHU M F, LI Z Q, LIAO C X, CHEN A P, LI C Z. Application in formaldehyde purification in air of flower spherical Bi2S3/BiOI composite photocatalyst[J]. Chinese J. Inorg. Chem., 2021,37(3):437-442.  

    3. [3]

      Xu Y Q, Hu X L, Zhu H K, Zhang J B. Insights into BiOCl with tunable nanostructures and their photocatalytic and electrochemical activities[J]. J. Mater. Sci., 2016,51(9):4342-4348. doi: 10.1007/s10853-016-9745-6

    4. [4]

      Yang W J, Wen Y W, Zeng D W, Wang Q B, Chen R, Wang W C, Shan B. Interfacial charge transfer and enhanced photocatalytic performance for the heterojunction WO3/BiOCl: First-principles study[J]. J. Mater. Chem. A, 2014,2(48):20770-20775. doi: 10.1039/C4TA04327H

    5. [5]

      Cao C H, Xiao L, Chen C H, Cao Q H. Synthesis of novel Cu2O/BiOCl heterojunction nanocomposites and their enhanced photocatalytic activity under visible light[J]. Appl. Surf. Sci., 2015,357:1171-1179. doi: 10.1016/j.apsusc.2015.09.121

    6. [6]

      Zhang Q J, Fu Y, Wu Y F, Zhang Y N, Zuo T Y. Low-cost Y-doped TiO2 nanosheets film with highly reactive {001} facets from CRT waste and enhanced photocatalytic removal of Cr and methyl orange[J]. ACS Sustain. Chem. Eng., 2016,4(3):1794-1803. doi: 10.1021/acssuschemeng.5b01783

    7. [7]

      Chen M L, Yu S, Zhang X J, Wang F, Lin Y H, Zhou Y. Insights into the photosensitivity of BiOCl nanoplates with exposing {001} facets: The role of oxygen vacancy[J]. Superlattices Microstruct., 2016,89:275-281. doi: 10.1016/j.spmi.2015.11.018

    8. [8]

      Wang W K, Chen J J, Li W W, Pei D N, Zhang X, Yu H Q. Synthesis of Pt - loaded self - interspersed anatase TiO2 with a large fraction of (1) facets for efficient photocatalytic nitrobenzene degradation[J]. ACS. Appl. Mater. Interfaces, 2015,7(36):20349-20359. doi: 10.1021/acsami.5b06161

    9. [9]

      Hu X L, Xu Y Q, Zhu H K, Hua F N, Zhu S F. Controllable hydrothermal synthesis of BiOCl nanoplates with high exposed {001} facets[J]. Mater. Sci. Semicond. Process, 2016,41:12-16. doi: 10.1016/j.mssp.2015.08.016

    10. [10]

      Pan M L, Zhang H J, Gao G D, Liu L, Chen W. Facet - dependent catalytic activity of nanosheet - assembled bismuth oxyiodide microspheres in degradation of bisphenol A[J]. Environ. Sci. Technol., 2015,49(10):6240-6248. doi: 10.1021/acs.est.5b00626

    11. [11]

      Wang W J, Huang B B, Ma X C, Wang Z Y, Qin X Y, Zhang X Y, Dai Y, Whangbo M H. Efficient separation of photogenerated electron hole pairs by the combination of a heterolayered structure and internal polar field in pyroelectric BiOIO3 nanoplates[J]. Chem.-Eur. J., 2013,19(44):14777-14780. doi: 10.1002/chem.201302884

    12. [12]

      Chen L, Yin S F, Luo S L, Huang R, Zhang Q, Hong T, Au P C T. Bi2 O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible - light treatment of dye - containing wastewater[J]. Ind. Eng. Chem. Res., 2012,51(19):6760-6768. doi: 10.1021/ie300567y

    13. [13]

      Xiong T, Dong F, Zhou Y, Fu M, Ho W K. New insights into how RGO influences the photocatalytic performance of BiOIO3/RGO nanocomposites under visible and UV irradiation[J]. J. Colloid Interface Sci., 2015,447:16-24. doi: 10.1016/j.jcis.2015.01.068

    14. [14]

      Wang W J, Cheng H F, Huang B B, Liu X L, Qin X Y, Zhang X Y, Dai Y. Hydrothermal synthesis of C3N4/BiOIO3 heterostructures with enhanced photocatalytic properties[J]. J. Colloid Interface Sci., 2015,442:97-102. doi: 10.1016/j.jcis.2014.11.061

    15. [15]

      Cui D H, Song X C, Zheng Y F. A novel AgI/BiOIO3 nanohybrid with improved visible-light photocatalytic activity[J]. RSC Adv., 2016,6(76):71983-71988. doi: 10.1039/C6RA14486A

    16. [16]

      Qi Y L, Song X C, Zheng Y F. Enhanced photocatalytic performance of heterojunction BiOI/BiOIO3 nanocomposites under simulated solar light[J]. Nano, 2017,12(3)1750027. doi: 10.1142/S1793292017500278

    17. [17]

      MA Z Y, YE L, WU Y H, ZHAO T. Preparation and photocatalytic performance of B, N - SnO2/TiO2 photocatalyst[J]. Acta Chim. Sinica, 2021,79(9):1173-1179.

  • 加载中
    1. [1]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    4. [4]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    6. [6]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    9. [9]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    10. [10]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    12. [12]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    13. [13]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

Metrics
  • PDF Downloads(4)
  • Abstract views(686)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return