Citation: Yu-Ao DONG, Zhe FENG, Dun-Ru ZHU. Syntheses of two Mg-based metal-organic frameworks by a coordination competitive strategy and the selective CO2 capture[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(1): 181-190. doi: 10.11862/CJIC.2022.278 shu

Syntheses of two Mg-based metal-organic frameworks by a coordination competitive strategy and the selective CO2 capture

  • Corresponding author: Dun-Ru ZHU, zhudr@njtech.edu.cn
  • Received Date: 20 August 2022
    Revised Date: 6 October 2022

Figures(5)

  • Two Mg-based metal-organic frameworks (MOFs) were prepared using a coordination competition strategy. Under acidic conditions, the reaction of Mg(Ⅱ) ions with formic acid generated from the thermal decomposition of N, N-dimethylformamide (DMF) formed a 3D formate Mg-MOF: [Mg3(HCO2)6]·DMF (1). However, under the same conditions but with a competing ligand 1,1'∶3',1″-terphenyl-3,3″,5, 5″-tetracarboxylic acid (H4L), formic acid was no longer involved in the coordination, resulting in a new 3D Mg-MOF: [Mg2(L) (H2O)3]·2H2O·2CH3CN·DMF (2). Single-crystal X-ray analysis revealed that 1 possesses [Mg4@Mg2] tetrahedral building units that form a dia topological network with a 1D channel size of 0.44 nm. In contrast, 2 has a unique [Mg2] binuclear cluster to build a sra topology network after bridging the 4-connected L4- linker. Interestingly, a dumbbell-shaped pore with a length of 1.42 nm is observed along the a-axis in 2. Gas adsorption studies reveal that 1 had a significantly accessible inner surface with a surface area of 342 m2·g-1. However, after solvent removal, 2 could not retain the original porous character. Featuring good water stability, 1 exhibited a type-Ⅰ CO2 adsorption isotherm with quick uptake at low pressure, and up to 14.5% of the sample weight at 298 K and 2 000 kPa. Ideal adsorption solution theory (IAST) and adsorption heat calculations show that 1 has a good ability for selective CO2 capture from CH4 contained mixture.
  • 加载中
    1. [1]

      Behera N, Duan J G, Jin W Q, Kitagawa S. The chemistry and applications of flexible porous coordination polymers[J]. Energy Chem., 2021,3100067. doi: 10.1016/j.enchem.2021.100067

    2. [2]

      Nam D H, De Luna P, Rosas-Hernandez A, Thevenon A, Li F W, Agapie T, Peters J C, Shekhah O, Eddaoudi M, Sargent E H. Molecular enhancement of heterogeneous CO2 reduction[J]. Nat. Mater., 2020,19:266-276. doi: 10.1038/s41563-020-0610-2

    3. [3]

      Wang X, Qin T, Bao S S, Zhang Y C, Shen X, Zheng L M, Zhu D R. Facile synthesis of a water stable 3D Eu-MOF showing high proton conductivity and its application as a sensitive luminescent sensor for Cu2+ ions[J]. J. Mater. Chem. A, 2016,4:16484-16489. doi: 10.1039/C6TA06792A

    4. [4]

      Zhang S L, Xie Y X, Yang M R, Zhu D R. Porosity regulation of metalorganic frameworks for high proton conductivity by rational ligand design: Mono-versus disulfonyl-4, 4'-biphenyldicarboxylic acid[J]. Inorg. Chem. Front., 2022,9:1134-1142. doi: 10.1039/D1QI01610E

    5. [5]

      Zeng H, Xie M, Wang T, Wei R J, Xie X J, Zhao Y F, Lu W G, Li D. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures[J]. Nature, 2021,595:542-548. doi: 10.1038/s41586-021-03627-8

    6. [6]

      Dong Q B, Huang Y H, Hyeon-Deuk K, Chang I Y, Wan J M, Chen C L, Duan J G, Jin W N, Kitagawa S. Shape- and size-dependent kinetic ethylene sieving from a ternary mixture by a trap-and-flow channel crystal[J]. Adv. Funct. Mater., 2022,322203745. doi: 10.1002/adfm.202203745

    7. [7]

      Dong Q B, Zhang X, Liu S, Lin R B, Guo Y N, Ma Y S, Yonezu A, Krishna R, Liu G P, Duan J G, Matsuda R, Jin W Q, Chen B L. Tuning gate-opening of a flexible metal-organic framework for ternary gas sieving separation[J]. Angew. Chem. Int. Ed., 2020,59:22756-22762. doi: 10.1002/anie.202011802

    8. [8]

      Lin R B, Li L B, Zhou H L, Wu H, He C H, Li S, Krishna R, Li J P, Zhou W, Chen B L. Molecular sieving of ethylene from ethane using a rigid metal-organic framework[J]. Nat. Mater., 2018,17:1128-1133. doi: 10.1038/s41563-018-0206-2

    9. [9]

      Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. The chemistry and applications of metal-organic frameworks[J]. Science, 2013,3411230444. doi: 10.1126/science.1230444

    10. [10]

      Gu C, Hosono N, Zheng J J, Sato Y, Kusaka S, Sakaki S, Kitagawa S. Design and control of gas diffusion process in a nanoporous soft crystal[J]. Science, 2019,363:387-391. doi: 10.1126/science.aar6833

    11. [11]

      Fukushima T, Horike S, Inubushi Y, Nakagawa K, Kubota Y, Takata M, Kitagawa S. Solid solutions of soft porous coordination polymers: Fine-tuning of gas adsorption properties[J]. Angew. Chem. Int. Ed., 2010,49:4820-4824. doi: 10.1002/anie.201000989

    12. [12]

      Zhang Y F, Zhang Z H, Ritter L, Fang H, Wang Q, Space B, Zhang Y B, Xue D X, Bai J F. New reticular chemistry of the rod secondary building unit: Synthesis, structure, and natural gas storage of a series of three-way rod amide-functionalized metal-organic frameworks[J]. J. Am. Chem. Soc., 2021,143:12202-12211. doi: 10.1021/jacs.1c04946

    13. [13]

      Xue D X, Wang Q, Bai J F. Amide-functionalized metal-organic frameworks: Syntheses, structures and improved gas storage and separation properties[J]. Coord. Chem. Rev., 2019,378:2-16. doi: 10.1016/j.ccr.2017.10.026

    14. [14]

      Farha O K, Yazaydin A O, Eryazici I, Malliakas C D, Hauser B G, Kanatzidis M G, Nguyen S T, Snurr R Q, Hupp J T. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities[J]. Nat. Chem., 2010,2:944-948. doi: 10.1038/nchem.834

    15. [15]

      Takaishi S, DeMarco E J, Pellin M J, Farha O K, Hupp J T. Solventassisted linker exchange (SALE) and post-assembly metallation in porphyrinic metal-organic framework materials[J]. Chem. Sci., 2013,4:1509-1513. doi: 10.1039/c2sc21516k

    16. [16]

      Howlader P, Mukherjee P S. Solvent directed synthesis of molecular cage and metal organic framework of copper(Ⅱ) paddlewheel cluster[J]. Isr. J. Chem., 2019,59:292-298. doi: 10.1002/ijch.201800155

    17. [17]

      Guo X G, Yang W B, Wu X Y, Zhang K, Lin L, Yu R M, Lu C Z. Stoichiometry, temperature, solvent, metal-directed syntheses of metal-organic frameworks based on flexible V-shaped methylenebis (3, 5-dimethylpyrazole) and various aromatic dicarboxylate acids[J]. CrystEngComm, 2013,15:3654-3663. doi: 10.1039/c3ce00048f

    18. [18]

      Duan J G, Jin W Q, Krishna R. Natural gas purification using a porous coordination polymer with water and chemical stability[J]. Inorg. Chem., 2015,54:4279-4284. doi: 10.1021/ic5030058

    19. [19]

      Sheldrick G M. A short history of SHELX[J]. Acta Crystallogr. Sect. A, 2008,A64:112-122.

    20. [20]

      Bae T H, Lee J S, Qiu W L, Koros W J, Jones C W, Nair S. Highperformance gas-separation membrane containing submicrometer-sized metal-organic framework crystals[J]. Angew. Chem. Int. Ed., 2010,49:9863-9866. doi: 10.1002/anie.201006141

    21. [21]

      Bae Y S, Mulfort K L, Frost H, Ryan P, Punnathanam S, Broadbelt L J, Hupp J T, Snurr R Q. Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks[J]. Langmuir, 2008,24:8592-8598. doi: 10.1021/la800555x

    22. [22]

      Li K H, Olsan D H, Lee J Y, Bi W H, Wu K, Yuen T, Xu Q, Li J. Multifunctional microporous MOFs exhibiting gas/hydrocarbon adsorption selectivity, separation capability and three-dimensional magnetic ordering[J]. Adv. Funct. Mater., 2008,18:2205-2214. doi: 10.1002/adfm.200800058

    23. [23]

      Wang Z M, Zhang B, Fujiwara H, Kobayashi H, Kurmoo M. Mn3(HCOO)6: A 3D porous magnet of diamond framework with nodes of Mn-centered MnMn4 tetrahedron and guest-modulated ordering temperature[J]. Chem. Commun., 2004:416-417.

    24. [24]

      Dybtsev D N, Chun H, Yoon S H, Kim D, Kim K. Microporous manganese formate: A simple metal-organic porous material with high framework stability and highly selective gas sorption properties[J]. J. Am. Chem. Soc., 2004,126:32-33. doi: 10.1021/ja038678c

    25. [25]

      Rood J A, Noll B C, Henderson K W. Synthesis, structural characterization, gas sorption and guest-exchange studies of the lightweight, porous metal-organic framework α-[Mg3(O2CH)6][J]. Inorg. Chem., 2006,45:5521-5528. doi: 10.1021/ic060543v

    26. [26]

      Mallick A, Saha S, Pachfule P, Roy S, Banerjee R. Structure and gas sorption behavior of a new three dimensional porous magnesium formate[J]. Inorg. Chem., 2011,50:1392-1401. doi: 10.1021/ic102057p

    27. [27]

      Song X H, Zhang M X, Duan J G, Bai J F. Constructing and finely tuning the CO2 traps of stable and various-pore-containing MOFs towards highly selective CO2 capture[J]. Chem. Commun., 2019,55:3477-3480. doi: 10.1039/C8CC10116G

    28. [28]

      Wang X Z, Zhu D R, Xu Y, Yang J, Shen X, Zhou J, Fei N, Ke X K, Peng L M. Three novel metal-organic frameworks with different topologies based on 3, 3'-dimethoxy-4, 4'-biphenyldicarboxylic acid: Syntheses, structures, and properties[J]. Cryst. Growth Des., 2010,10:887-894. doi: 10.1021/cg9012262

    29. [29]

      Luo R, Xu H, Gu H X, Wang X, Xu Y, Shen X, Bao W W, Zhu D R. Four MOFs with 2, 2'-dimethoxy-4, 4'-biphenyldicarboxylic acid: Syntheses, structures, topologies and properties[J]. CrystEngComm, 2014,16:784-796. doi: 10.1039/C3CE41428K

    30. [30]

      Jiang J J, Lu Z Y, Zhang M X, Duan J G, Zhang W W, Pan Y, Bai J F. Higher symmetry multinuclear clusters of MOFs for highly selective CO2 capture[J]. J. Am. Chem. Soc., 2018,140:17825-17829. doi: 10.1021/jacs.8b07589

    31. [31]

      Banerjee R, Furukawa H, Britt D, Knobler C, O'Keeffe M, Yaghi O M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J]. J. Am. Chem. Soc., 2009,131:3875-3877. doi: 10.1021/ja809459e

    32. [32]

      Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R. Carbon dioxide capture in metal-organic frameworks[J]. Chem. Rev., 2012,112:724-781. doi: 10.1021/cr2003272

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    3. [3]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    4. [4]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    5. [5]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    6. [6]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    7. [7]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    12. [12]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    13. [13]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    14. [14]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    15. [15]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    16. [16]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    17. [17]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    18. [18]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

Metrics
  • PDF Downloads(6)
  • Abstract views(1014)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return