Citation: Jia-Xuan WANG, Liang-Qing LI, Lei MA, Jin-Yin LÜ, Jian-Hua YANG, Jin-Ming LU. Preparation of mordenite membrane for pervaporation dehydration of acetic acid by a two-stage varying temperature crystallization hydrothermal method[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(1): 91-97. doi: 10.11862/CJIC.2022.270 shu

Preparation of mordenite membrane for pervaporation dehydration of acetic acid by a two-stage varying temperature crystallization hydrothermal method

  • Corresponding author: Jian-Hua YANG, yjianhua@dlut.edu.cn
  • Received Date: 9 June 2022
    Revised Date: 11 November 2022

Figures(4)

  • Pervaporation (PV) has been favorably adopted in the industrial dehydration of various organic mixtures. In this work, mordenite membrane (MOR membrane) for PV dehydration of acetic acid was prepared by a two-stage varying temperature crystallization hydrothermal method from dilute synthesis solution with a high molar ratio of water to silica (nH2O/nSiO2). The effects of varying temperature crystallization time, nH2O/nSiO2, and the amount of fluorine ion on the morphology and separation performance of MOR membrane were investigated. The results showed that the above conditions have significant effects on the morphology, crystallinity, membrane thickness, and PV performance of the MOR membranes. The best performance MOR membrane was prepared at first-stage temperature (150 ℃, 18 h) and second-stage temperature (120 ℃, 6 h) with nH2O/nSiO2=60. The permeation flux and separation coefficient of the mass fraction of 50% acetic acid aqueous solution were 1.45 kg·m-2·h-1 and 1 008, respectively.
  • 加载中
    1. [1]

      Lei Z G, Li C Y, Li Y X, Chen B H. Separation of acetic acid and water by complex extractive distillation[J]. Sep. Purif. Technol., 2004,36(2):131-138. doi: 10.1016/S1383-5866(03)00208-9

    2. [2]

      Wang X P. Modified alginate composite membranes for the dehydration of acetic acid[J]. J. Membr. Sci., 2000,170(1):71-79. doi: 10.1016/S0376-7388(99)00361-0

    3. [3]

      Jonquières A, Clément R, Lochon P, Néel J, Dresch M, Chrétien B. Industrial state-of-the-art of pervaporation and vapour permeation in the western countries[J]. J. Membr. Sci., 2002,206(1/2):87-117.

    4. [4]

      Bowen T C, Noble R D, Falconer J L. Fundamentals and applications of pervaporation through zeolite membranes[J]. J. Membr. Sci., 2004,245(1/2):1-33.

    5. [5]

      Smitha B, Suhanya D, Sridhar S, Ramakrishna M. Separation of organic- organic mixtures by pervaporation-A review[J]. J. Membr. Sci., 2004,241(1):1-21. doi: 10.1016/j.memsci.2004.03.042

    6. [6]

      Wee S L, Tye C T, Bhatia S. Membrane separation process-pervaporation through zeolite membrane[J]. Sep. Purif. Technol., 2008,63(3):500-516. doi: 10.1016/j.seppur.2008.07.010

    7. [7]

      Sander U, Soukup P. Design and operation of a pervaporation plant for ethanol dehydration[J]. J. Membr. Sci., 1988,36:463-475. doi: 10.1016/0376-7388(88)80036-X

    8. [8]

      WANG J Q, YANG J H, CHEN Z, YIN D H. Research advances in zeolite membranes for pervaporation dehydration of organics in harsh environment[J]. Membrane Science and Technology, 2011,31(3):118-126. doi: 10.3969/j.issn.1007-8924.2011.03.018

    9. [9]

      Raza W, Wang J X, Yang J H, Tsuru T. Progress in pervaporation membranes for dehydration of acetic acid[J]. Sep. Purif. Technol., 2021,262118338. doi: 10.1016/j.seppur.2021.118338

    10. [10]

      Li Y S, Zhang X F, Wang J Q. Preparation for ZSM-5 membranes by a two-stage varying-temperature synthesis[J]. Sep. Purif. Technol., 2001,25(1/2/3):459-466.

    11. [11]

      Kong C L, Lu J M, Yang J H, Wang J Q. Preparation of silicalite-1 membranes on stainless steel supports by a two-stage varyingtemperature in situ synthesis[J]. J. Membr. Sci., 2006,285(1/2):258-264.

    12. [12]

      Zhu M H, Xia S L, Hua X M, Feng Z J, Hu N, Zhang F, Kumakiri I, Lu Z H, Chen X S, Kita H. Rapid preparation of acid-stable and high dehydration performance mordenite membranes[J]. Ind. Eng. Chem. Res., 2014,53(49):19168-19174. doi: 10.1021/ie501248y

    13. [13]

      Li L Q, Yang J H, Li J J, Han P, Wang J X, Zhao Y, Wang J Q, Lu J M, Yin D H, Zhang Y. Synthesis of high performance mordenite membranes from fluoride-containing dilute solution under microwaveassisted heating[J]. J. Membr. Sci., 2016,512:83-92. doi: 10.1016/j.memsci.2016.03.056

    14. [14]

      Wang S, Li L Q, Li J J, Wang J X, Pan E Z, Lu J M, Zhan Y, Yang J H. Sustainable synthesis of highly water-selective ZSM-5 membrane by wet gel conversion[J]. J. Membr. Sci., 2021,635119431. doi: 10.1016/j.memsci.2021.119431

    15. [15]

      Wang J X, Wang L, Li L Q, Li J J, Raza W, Lu J M, Yang J H. A green synthesis of MOR zeolite membranes by wet gel conversion for dehydration of water-acetic acid mixtures[J]. Sep. Purif. Technol., 2022,286120311. doi: 10.1016/j.seppur.2021.120311

    16. [16]

      Matsukata M, Sawamura K I, Shirai T, Takada M, Sekine Y, Kikuchi E. Controlled growth for synthesizing a compact mordenite membrane[J]. J. Membr. Sci., 2008,316(1/2):18-27.

    17. [17]

      Zhu M H, Hua X M, Liu Y S, Hu H L, Li Y Q, Hu N, Kumakiri I, Chen X S, Kita H. Influences of synthesis parameters on preparation of acid-stable and reproducible mordenite membrane[J]. Ind. Eng. Chem. Res., 2016,55(47):12268-12275. doi: 10.1021/acs.iecr.6b02125

    18. [18]

      Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time[J]. Chem. Rev., 2003,103(3):663-702. doi: 10.1021/cr020060i

    19. [19]

      Lim I H, Schrader W, Schüth F. The formation of zeolites from solution-Analysis by mass spectrometry[J]. Microporous Mesoporous Mater., 2013,166:20-36. doi: 10.1016/j.micromeso.2012.04.059

    20. [20]

      Chapman P D, Oliveira T, Livingston A G, Li K. Membranes for the dehydration of solvents by pervaporation[J]. J. Membr. Sci., 2008,318(1/ 2):5-37.

    21. [21]

      Li G, Kikuchi E, Matsukata M. A study on the pervaporation of wateracetic acid mixtures through ZSM-5 zeolite membranes[J]. J. Membr. Sci., 2003,218(1/2):185-194.

    22. [22]

      Li G, Kikuchi E, Matsukata M. Separation of water-acetic acid mixtures by pervaporation using a thin mordenite membrane[J]. Sep. Purif. Technol., 2003,32(1/2/3):199-206.

    23. [23]

      Tanaka K, Yoshikawa R, Ying C, Kita H, Okamoto K I. Application of zeolite membranes to esterification reactions[J]. Catal. Today, 2001,67(1/2/3):121-125.

    24. [24]

      Zhu M H, Kumakiri I, Tanaka K, Kita H. Dehydration of acetic acid and esterification product by acid-stable ZSM-5 membrane[J]. Micropo⁃ rous Mesoporous Mater., 2013,181:47-53. doi: 10.1016/j.micromeso.2012.12.044

    25. [25]

      Tsuru T, Shibata T, Wang J, Lee H R, Kanezashi M, Yoshioka T. Pervaporation of acetic acid aqueous solutions by organosilica membranes[J]. J. Membr. Sci., 2012,421:25-31.

    26. [26]

      Sato K, Sugimoto K, Kyotani T, Shimotsuma N, Kurata T. Synthesis, reproducibility, characterization, pervaporation and technical feasibility of preferentially b-oriented mordenite membranes for dehydration of acetic acid solution[J]. J. Membr. Sci., 2011,385:20-29.

  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    3. [3]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    4. [4]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    5. [5]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    6. [6]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    7. [7]

      Yinuo Wu Jiantao Ye Xie Zhou Yu Qian Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077

    8. [8]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    9. [9]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    12. [12]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    13. [13]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    14. [14]

      Lili Wang Chunxia Chen Lina Jia Li Guo Jingjing Cao . Exploration and Practice in Innovative and Interesting Scientific Research Skills Training for Wood Magnetization. University Chemistry, 2024, 39(6): 246-252. doi: 10.3866/PKU.DXHX202310088

    15. [15]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    18. [18]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    19. [19]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    20. [20]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

Metrics
  • PDF Downloads(5)
  • Abstract views(918)
  • HTML views(109)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return