N-doped carbon nanotubes catalyst with highly loaded metals for high-performance aluminum-air batteries
- Corresponding author: Ai-Min WU, aimin@dlut.edu.cn
Citation: Jie WANG, Ai-Min WU, Zhi-Wen QIU, Wen-Jun QIN, Ang DING, Hao HUANG. N-doped carbon nanotubes catalyst with highly loaded metals for high-performance aluminum-air batteries[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 337-345. doi: 10.11862/CJIC.2022.269
Liu Z N, Li Z Y, Ma J, Dong X, Ku W, Wang M, Sun H, Liang S, Lu G L. Nitrogen and cobalt-doped porous biocarbon materials derived from corn stover as efficient electrocatalysts for aluminum-air batter-ies[J]. Energy, 2018,162:453-459. doi: 10.1016/j.energy.2018.07.175
Cheng R Q, Wang F, Jiang M, Li K Q, Zhao T S, Meng P Y, Yang J, Fu C P. Plasma-assisted synthesis of defect-rich O and N codoped car-bon nanofibers loaded with manganese oxides as an efficient oxygen reduction electrocatalyst for aluminum-air batteries[J]. ACS Appl. Mater. Interfaces, 2021,13:37123-37132. doi: 10.1021/acsami.1c09067
He Y H, Liu S W, Priest C, Shi Q R, Wu G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement[J]. Chem. Soc. Rev., 2020,49:3484-3524. doi: 10.1039/C9CS00903E
YANG X D, CHEN C, ZHOU Z Y, SUN S G. Advances in active site structure of carbon-based non-precious metal catalysts for oxygen reduction reaction[J]. Acta Phys.-Chim. Sin., 2019,35:472-485.
Yang W X, Liu X J, Yue X Y, Jia J B, Guo S J. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient cataly-sis for oxygen reduction[J]. J. Am. Chem. Soc., 2015,137:1436-1439. doi: 10.1021/ja5129132
Saito Y, Kawabata K, Okuda M. Single-layered carbon nanotubes syn-thesized by catalytic assistance of rare-earths in a carbon arc[J]. J. Phys. Chem., 1995,99:16076-16079. doi: 10.1021/j100043a056
Xiao M L, Xing Z H, Jin Z, Liu C P, Ge J J, Zhu J B, Wang Y, Zhao X, Chen Z W. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries[J]. Adv. Mater., 2020,322004900. doi: 10.1002/adma.202004900
Bokobza L, Zhang J. Raman spectroscopic characterization of multi-wall carbon nanotubes and of composites[J]. Express Polym. Lett., 2012,6:601-608. doi: 10.3144/expresspolymlett.2012.63
Qin X J, Peng F, Yang F, He X H, Huang H X, Luo D, Yang J, Wang S, Liu H C, Peng L M, Li Y. Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports[J]. Nano Lett., 2014,14:512-517. doi: 10.1021/nl403515c
Zhang H W, Zhao M Q, Liu H R, Shi S R, Wang Z H, Zhang B, Song L, Shang J Z, Yang Y, Ma C, Zheng L R, Han Y H, Huang W. Ultra-stable FeCo bifunctional electrocatalyst on Se-doped CNTs for liquid and flexible all-solid-state rechargeable Zn-air batteries[J]. Nano Lett., 2021,21:2255-2264. doi: 10.1021/acs.nanolett.1c00077
Hao R, Ren J T, Lv X W, Li W, Liu Y P, Yuan Z Y. N-doped porous carbon hollow microspheres encapsulated with iron-based nanocom-posites as advanced bifunctional catalysts for rechargeable Zn-air battery[J]. J. Energy Chem., 2020,49:14-21. doi: 10.1016/j.jechem.2020.01.007
Han J X, Bao H L, Wang J Q, Zheng L R, Sun S R, Wang Z L, Sun C W. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery[J]. Appl. Catal. B -Environ., 2021,280119411. doi: 10.1016/j.apcatb.2020.119411
Yang L, Cai Z, Hao L, Xing Z P, Dai Y, Xu X, Pan S Y, Duan Y Q, Zou J L. Nano Ce2O2S with highly enriched oxygen-deficient Ce3+ sites supported by N and S dual-doped carbon as an active oxygen-supply catalyst for the oxygen reduction reaction[J]. ACS Appl. Mater. Interfaces, 2017,9:22518-22529. doi: 10.1021/acsami.7b04997
Li G Z, Mu Y C, Huang Z X, Wang N G, Chen Y Y, Liu J, Liu G P, Li O L, Shao M H, Shi Z C. Poly-active centric Co3O4-CeO2/Co-N-C composites as superior oxygen reduction catalysts for Zn-air batter-ies[J]. Sci. China Mater., 2020,64:73-84.
Li J C, Qin X P, Xiao F, Liang C H, Xu M J, Meng Y, Sarnello E, Fang L Z, Li T, Ding S C, Lyu Z Y, Zhu S Q, Pan X Q, Hou P X, Liu C, Lin Y H, Shao M H. Highly dispersive cerium atoms on carbon nanowires as oxygen reduction reaction electrocatalysts for Zn-air batteries[J]. Nano Lett., 2021,21:4508-4515. doi: 10.1021/acs.nanolett.1c01493
Robertson J. Heterogeneous catalysis model of growth mechanisms of carbon nanotubes, graphene and silicon nanowires[J]. J. Mater. Chem., 2012,2219858. doi: 10.1039/c2jm33732k
Journet C, Picher M, Jourdain V. Carbon nanotube synthesis: From large-scale production to atom-by-atom growth[J]. Nanotechnology, 2012,23142001. doi: 10.1088/0957-4484/23/14/142001
Silvearv F, Larsson P, Jones S L T, Ahuja R, Larsson J A. Establish-ing the most favorable metal-carbon bond strength for carbon nano-tube catalysts[J]. J. Mater. Chem. C, 2015,3:3422-3427. doi: 10.1039/C5TC00143A
Allaedini G, Aminayi P, Tasirin S M. Methane decomposition for car-bon nanotube production: Optimization of the reaction parameters using response surface methodology[J]. Chem. Eng. Res. Des., 2016,112:163-174. doi: 10.1016/j.cherd.2016.06.010
Hu J W, Wu D Y, Zhu C, Hao C, Xin C C, Zhang J W, Guo J Y, Li N N, Zhang G F, Shi Y T. Melt-salt-assisted direct transformation of solid oxide into atomically dispersed FeN4 sites on nitrogen-doped porous carbon[J]. Nano Energy, 2020,72104670. doi: 10.1016/j.nanoen.2020.104670
Fu X G, Li N, Ren B H, Jiang G P, Liu Y R, Hassan F M, Su D, Zhu J B, Yang L, Bai Z Y, Cano Z P, Yu A P, Chen Z W. Tailoring FeN4 sites with edge enrichment for boosted oxygen reduction perfor-mance in proton exchange membrane fuel cell[J]. Adv. Energy Mater., 2019,91803737. doi: 10.1002/aenm.201803737
Li H G, Di S L, Niu P, Wang S L, Wang J, Li L. A durable half-metallic diatomic catalyst for efficient oxygen reduction[J]. Energy Environ. Sci., 2022,15:1601-1610. doi: 10.1039/D1EE03194E
Wang C, Liu Y P, Li Z F, Wang L K, Niu X L, Sun P. Novel space-confinement synthesis of two-dimensional Fe, N-codoped graphene bifunctional oxygen electrocatalyst for rechargeable air-cathode[J]. Chem. Eng. J., 2021,411128492. doi: 10.1016/j.cej.2021.128492
Zhang Q R, Kumar P, Zhu X F, Daiyan R, Bedford N M, Wu K H, Han Z J, Zhang T R, Amal R, Lu X Y. Electronically modified atom-ic sites within a multicomponent Co/Cu composite for efficient oxy-gen electroreduction[J]. Adv. Energy Mater., 2021,11104670.
Wang W, Xue S Y, Li J M, Wang F X, Kang Y M, Lei Z Q. Cerium carbide embedded in nitrogen-doped carbon as a highly active elec-trocatalyst for oxygen reduction reaction[J]. J. Power Sources, 2017,359:487-493. doi: 10.1016/j.jpowsour.2017.05.033
Liu S H, Cao Z B, Meng Y, Li Y J, Yang W M, Chang Z, Liu W, Sun X M. Aerophilic Co-embedded N-doped carbon nanotube arrays as highly efficient cathodes for aluminum-air batteries[J]. ACS Appl. Mater. Interfaces, 2021,13:26853-26860. doi: 10.1021/acsami.1c00837
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454