Citation: Tian-Yun WANG, Na HAN, De-Dong JIA, Hong-Qiang LI, Xiao-Jun HE. Preparation and supercapacitive properties of B, N co⁃doped porous carbons[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 309-316. doi: 10.11862/CJIC.2022.267 shu

Preparation and supercapacitive properties of B, N co⁃doped porous carbons

Figures(8)

  • Herein, we employed (CH3COO)2Zn as template to prepare B, N co - doped porous carbons (BN - PC) by using phenanthroline as precursor and N source, K2B4O7 as B source. The effect of template mass on the structure and electric storage properties of BN-PC5 was investigated. When the mass of (CH3COO)2Zn was 5 g, the B and N heteroatom content of BN - PC 5 was 20.21% and 18.29%, respectively. As the electrode materials for supercapaci-tors, BN-PC5 exhibited a high specific capacitance of 255 F·g-1 at 0.05 A·g-1, an excellent rate performance of 188 A·g-1 at 20 A·g-1 and outstanding cycle stability with 97% of initial capacitance retention after 10 000 cycles in 6 mol·L-1 KOH aqueous electrolyte. The energy density of BN-PC5 capacitor reached 27 Wh·kg-1 at an average power density of 56 W·kg-1 in 3 mol·L-1 ZnSO4 aqueous electrolyte.
  • 加载中
    1. [1]

      Shen S H, Huang L, Tong X L, Zhou R F, Zhong Y, Xiong Q Q, Zhang L J, Wang X L, Xia X H, Tu J P. A powerful one-step puffing carbonization method for construction of versatile carbon composites with high-efficiency energy storage[J]. Adv. Mater., 2021,332102796. doi: 10.1002/adma.202102796

    2. [2]

      Wang H Y, Ye W Q, Yang Y, Zhong Y J, Hu Y. Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives[J]. Nano Energy, 2021,85105942. doi: 10.1016/j.nanoen.2021.105942

    3. [3]

      Xu L M, Zhou W Q, Chao S X, Liang Y M, Zhao X Q, Liu C C, Xu J K. Advanced oxygen - vacancy co - doped MoO3 ultrathin nanoflakes anode materials used as asymmetric supercapacitors with ultrahigh energy density[J]. Adv. Energy Mater., 2022,122200101. doi: 10.1002/aenm.202200101

    4. [4]

      He X J, Ma H, Wang J X, Xie Y Y, Xiao N, Qiu J S. Porous carbon nanosheets from coal tar for high - performance supercapacitors[J]. J. Power Sources, 2017,357:41-46. doi: 10.1016/j.jpowsour.2017.04.108

    5. [5]

      Wang C, Gu L L, Qiu S Y, Gao J, Zhang Y C, Wang K X, Zou J J, Zuo P J, Zhu X D. Modulating CoFe2O4 nanocube with oxygen vacancy and carbon wrapper towards enhanced electrocatalytic nitrogen reduction to ammonia[J]. Appl. Catal. B-Envrion., 2021,297120452. doi: 10.1016/j.apcatb.2021.120452

    6. [6]

      Ren Y F, He Z L, Zhao H Z, Zhu T. Fabrication of MOF - derived mixed metal oxides with carbon residues for pseudocapacitors with long cycle life[J]. Rare Metals, 2022,41(3):830-835. doi: 10.1007/s12598-021-01836-8

    7. [7]

      Yang L, Guo X T, Jin Z K, Guo W C, Duan G G, Liu X H, Li Y W. Emergence of melanin - inspired supercapacitors[J]. Nano Today, 2021,37101075. doi: 10.1016/j.nantod.2020.101075

    8. [8]

      Yan J, Li S, Lan B, Wu Y C, Lee P S. Rational design of nanostructured electrode materials toward multifunctional supercapacitors[J]. Adv. Funct. Mater., 2020,301902564. doi: 10.1002/adfm.201902564

    9. [9]

      Wang H, Shao Y, Mei S L, Lu Y, Zhang M, Sun J K, Matyjaszewski K, Antonietti M, Yuan J Y. Polymer - derived heteroatom - doped porous carbon materials[J]. Chem. Rev., 2020,120:9363-9419. doi: 10.1021/acs.chemrev.0c00080

    10. [10]

      Zhang X Z, Raj D V, Zhou X F, Liu Z P. Solvent evaporation induced graphene powder with high volumetric capactiance and outstanding rate capability for supercapacitors[J]. J. Power Sources, 2018,382:95-100. doi: 10.1016/j.jpowsour.2018.02.032

    11. [11]

      Deng X, Shi W X, Zhong Y J, Zhou W, Liu M L, Shao Z P. Facile strategy to low-cost synthesis of hierarchically porous, active carbon of high graphitization for energy storage[J]. ACS Appl. Mater. Interfaces, 2018,10:21573-21581. doi: 10.1021/acsami.8b04733

    12. [12]

      Ghosh S, Barg S, Jeong S M, Ostrikov K. Heteroatom-doped and oxygen - functionalized nanocarbons for high - performance supercapacitors[J]. Adv. Energy Mater., 2020,102001239. doi: 10.1002/aenm.202001239

    13. [13]

      Fan M M, Yuan Q X, Zhao Y Y, Wang Z M, Wang A, Liu Y Y, Sun K, Wu J J, Wang L, Jiang J C. A facile"double-catalysts"approach to directionally fabricate pyridinic N-B - pair-doped crystal graphene nanoribbons/amorphous carbon hybrid electrocatalysts for efficient oxygen reduction reaction[J]. Adv. Mater., 2022,342107040. doi: 10.1002/adma.202107040

    14. [14]

      Chen Z Y, Zhao S Q, Zhao H H, Zou Y B, Yu C Y, Zhong W B. Nitrogen - doped interpenetrating porous carbon/graphene networks for supercapacitors applications[J]. Chem. Eng. J., 2021,409127891. doi: 10.1016/j.cej.2020.127891

    15. [15]

      Lu Y, Liang J N, Hu Y Z, Liu Y, Chen K, Deng S F, Wang D L. Accurate control multiple active sites of carbonaceous anode for high performance sodium storage: Insights into capacitive contribution mechanism[J]. Adv. Energy Mater., 2020,101903312. doi: 10.1002/aenm.201903312

    16. [16]

      Feng X, Bai Y, Liu M Q, Li Y, Yang H Y, Wang X R, Wu C. Untangling the respective effects of heteroatom - doped carbon materials in batteries, supercapacitors and ORR to design high performance materials[J]. Energy Environ. Sci., 2021,14:2036-2089. doi: 10.1039/D1EE00166C

    17. [17]

      Sedajova V, Bakandritsos A, Btonski P, Medved M, Langer R, Zaoralova D, Ugolotti J, Dzibelova J, Jakubec P, Kupka V, Otyepka M. Nitrogen doped graphene with diamond - like bonds achieves unprecedented energy density at high power in a symmetric sustainable supercapacitor[J]. Energy Environ. Sci., 2022,15:740-748. doi: 10.1039/D1EE02234B

    18. [18]

      Zhang J, Ma W Z, Feng Z Y, Wu F F, Wei D H, Xi B J. P-doped BN nanosheets decorated graphene as the functional interlayer for Li - S batteries[J]. J. Energy Chem., 2019,39:54-60. doi: 10.1016/j.jechem.2019.01.016

    19. [19]

      Zhang H F, Chen Z S, Zhang Y H, Ma Z Q, Zhang Y G, Bai L Q, Sun L. Boosting Zn - ion adsorption in cross - linked N/P co - incorporated porous carbon nanosheets for the zinc - ion hybrid capacitors[J]. J. Mater. Chem. A, 2021,9:16565-16574. doi: 10.1039/D1TA03501K

    20. [20]

      Zhang H, Wang C H, Zhang W X, Zhang M, Qi J W, Qian J S, Sun X Y, Yuliarto B, Na J, Park T, Gomaa H G A, Kaneti Y V, Yi J W, Yamauchi Y, Li J S. Nitrogen, phosphorus co- doped eave-like hierarchical porous carbon for efficient capacitive deionization[J]. J. Mater. Chem. A, 2021,9:12807-12817. doi: 10.1039/D0TA10797B

    21. [21]

      Xue W D, Zhou Q X, Cui X, Jia S R, Zhang J W, Lin Z Q. Metal - organic frameworks - derived heteroatom - doped carbon electrocatalysts for oxygen reduction reaction[J]. Nano Energy, 2021,86106073. doi: 10.1016/j.nanoen.2021.106073

    22. [22]

      EL-Mahdy A F M, Yu T C, Kuo S W. Synthesis of multiple heteroatom-doped mesoporous carbon/silica composites for supercapacitors[J]. Chem. Eng. J., 2021,414128796. doi: 10.1016/j.cej.2021.128796

    23. [23]

      He X J, Xie X Y, Wang J X, Ma X F, Xie Y Y, Gu J, Xiao N, Qiu J S. From fluorene molecules to ultrathin carbon nanonets with an enhanced charge transfer capability for supercapacitors[J]. Nanoscale, 2019,11:6610-6619. doi: 10.1039/C9NR00068B

    24. [24]

      Gu L L, Wang C, Qiu S Y, Zuo P J, Wang K X, Zhang C Y, Gao J, Xie Y, Zhu X D. Cobalt-ion oxide nanoparticles anchored on carbon nanotube paper to accelerate polysulfide conversion for lithium - sulfur batteries[J]. J. Alloy. Compd., 2022,909164805. doi: 10.1016/j.jallcom.2022.164805

    25. [25]

      Wu Y Y, Zhu L W, Chen R T, Gu L, Cao X B, Lu S R. Self-assembled activated carbon sandwiched graphene film for symmetrical supercapacitors[J]. J. Cent. South Univ., 2020,27(12):3603-3614. doi: 10.1007/s11771-020-4505-9

    26. [26]

      Zhao S Q, Yan K, Liang J Y, Yuan Q H, Zhang J Q, Sun B, Munroe P, Wang G X. Phosphorus and oxygen dual - doped porous carbon spheres with enhanced reaction kinetics as anode materials for high-performance potassium - ion hybrid capacitors[J]. Adv. Funct. Mater., 2021,312102060. doi: 10.1002/adfm.202102060

    27. [27]

      Li X S, Zhao H H, Zhang C, Xing B L, Zhang C X, Zhou C C. One-pot fabrication of pitch-derived soft carbon with hierarchical porous structure and rich sp2 carbon for sodium - ion battery[J]. J. Mater. Sci: Mater. Electron., 2021,32:21944-21956. doi: 10.1007/s10854-021-06601-2

    28. [28]

      Xu Z X, Ma R J, Wang X L. Ultrafast, long - life, high - loading, and wide - temperature zinc ion supercapacitors[J]. Energy Storage Mater., 2022,46:233-242. doi: 10.1016/j.ensm.2022.01.011

    29. [29]

      Borchardt L, Leistenschneider D, Hasse J, Dvoyashkin M. Revising the concept for pore hierarchy for ionic transport in carbon materials for supercapacitors[J]. Adv. Energy Mater., 2018,8(24)1800892. doi: 10.1002/aenm.201800892

    30. [30]

      Wei F, He X J, Zhang H F, Liu Z D, Xiao N, Qiu J S. Crumpled carbon nanonets derived from anthracene oil for high energy density supercapacitors[J]. J. Power Sources, 2019,428:8-12. doi: 10.1016/j.jpowsour.2019.04.096

    31. [31]

      Dong X M, Jin H L, Wang R Y, Zhang J J, Feng X, Yan C Z, Chen S Q, Wang S, Wang J C, Lu J. High volumetric capacitance, ultralong life supercapacitors enabled by eaxberry-derived hierarchical porous carbon materials[J]. Adv. Energy Mater., 2018,8(11)1702695. doi: 10.1002/aenm.201702695

    32. [32]

      Dong S A, He X J, Zhang H F, Xie X Y, Yu M X, Yu C, Xiao N, Qiu J S. Surface modification of biomass -derived hard carbon by grafting porous carbon nanosheets for high - performance supercapacitors[J]. J. Mater. Chem. A, 2018,6(33):15954-15960. doi: 10.1039/C8TA04080J

    33. [33]

      YANG L, WU T T, LI H Q, JIN B Y, HE X J. Preparation of nitrogen-doped carbon nanonets for high - performance supercapacitors[J]. Chinese J. Inorg. Chem., 2021,37(6):1017-1026.  

    34. [34]

      Hu X, Wang G X, Li J W, Huang J H, Liu Y J, Zhong G B, Yuan J, Zhan H B, Wen Z H. Significant contribution of single atomic Mn implanted in carbon nanosheets to high - performance sodium - ion hybrid capacitors[J]. Energy Environ. Sci., 2021,14:4564-4573. doi: 10.1039/D1EE00370D

    35. [35]

      Jeong J M, Park S H, Park H J, Jin B S, Son S G, Moon J M, Suh H, Choi B G. Alternative-ultrathin assembling of exfoliated manganese dioxide and nitrogen - doped carbon layers for high - mass - loading supercapacitors with outstanding capacitance and impressive rate capability[J]. Adv. Funct. Mater., 2021,312009632. doi: 10.1002/adfm.202009632

    36. [36]

      He H N, Huang D, Tang Y G, Wang Q, Ji X B, Wang H Y, Guo Z P. Tuning nitrogen species in three-dimensional porous carbon via phosporus doping for ultra - fast potassium storage[J]. Nano Energy, 2019,57:728-736. doi: 10.1016/j.nanoen.2019.01.009

    37. [37]

      RONG H R, WANG X M, WEI Y H, CHEN X J, LAI L H, LIU Q. A layered Co - MOF based electrode material of supercapacitor with high-capacity[J]. Chinese J. Inorg. Chem., 2021,37(12):2227-2234. doi: 10.11862/CJIC.2021.230 

    38. [38]

      He X J, Zhang N, Shao X L, Wu M B, Yu M X, Qiu J S. A layered-template-nanospace-confinement strategy for production of corrugated graphene nanosheets from petroleum pitch for supercapacitors[J]. Chem. Eng. J., 2016,297:121-127. doi: 10.1016/j.cej.2016.03.153

    39. [39]

      Dou S M, Xu J, Yang C, Liu W D, Manke I, Zhou W, Peng X, Sun G L, Zhao K N, Yan Z H, Xu Y H, Yuan Q H, Chen Y A, Chen R J. Dual -function engineering to construct ultra -stable anodes for potassium - ion hybrid capacitors: N, O - doped porous carbon spheres[J]. Nano Energy, 2022,93106903. doi: 10.1016/j.nanoen.2021.106903

    40. [40]

      Lee Y G, Lee J, An G H. Surface engineering of carbon via coupled porosity tuning and heteroatom-doped for high-performance flexible fibrous supercapacitors[J]. Adv. Funct. Mater., 2021,312104256. doi: 10.1002/adfm.202104256

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    10. [10]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    11. [11]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    12. [12]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    15. [15]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    16. [16]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

Metrics
  • PDF Downloads(13)
  • Abstract views(1388)
  • HTML views(254)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return