Citation: Sheng-Ding XUE, Jun GU, Meng-Fei HAN, Su-Jun ZHU, Tao YU. Preparation of platinum catalysts supported on oxygen-boron co-modification multi-wall carbon nanotubes and their oxygen reducing activity[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 281-290. doi: 10.11862/CJIC.2022.262 shu

Preparation of platinum catalysts supported on oxygen-boron co-modification multi-wall carbon nanotubes and their oxygen reducing activity

  • Corresponding author: Jun GU, junguca@nju.edu.cn
  • Received Date: 22 July 2022
    Revised Date: 21 October 2022

Figures(7)

  • We synthesized an oxygen-boron co-decorated multi-walled carbon nanotube material by a simple method. After that, it was used as a carrier to prepare platinum-based catalysts and carried out a variety of characterizations. The results indicated that the platinum particles supported on this carrier showed smaller particle size, higher electrochemical surface area (40 m2·gPt-1), and higher oxygen reduction activity (0.3 A·mgPt-1). Predictably, boron and oxygen play an important role in improving the dispersion of carbon nanotubes, controlling the uniformity and size of platinum particles, and promoting oxygen adsorption/dissociation in the oxygen reduction reaction.
  • 加载中
    1. [1]

      Tomas M, Gholami F, Gholami Z, Sedlacek J. Catalysts for oxygen reduction reaction in the polymer electrolyte membrane fuel cells: A brief review[J]. Electrochem, 2021,2(4):590-603. doi: 10.3390/electrochem2040037

    2. [2]

      GAO W T, LEI Y J, ZHANG X, HU X B, SONG P P, ZHAO Q, WANG C, MAO Z Q. An overview of proton exchange membrane fuel cell[J]. Chem. Ind. Eng. Prog., 2022,41(3):1539-1555.  

    3. [3]

      LUO Y, FENG J Z, FENG J, JIANG Y G, LI L J. Research progress on advanced carbon materials as Pt support for proton exchange membrane fuel cells[J]. J. Inorg. Mater., 2020,35(4):407-415.  

    4. [4]

      Pollet B G S S. Support materials for PEMFC and DMFC electrocatalysts-A review[J]. J. Power Sources, 2012,208:96-119. doi: 10.1016/j.jpowsour.2012.02.011

    5. [5]

      XU C, TANG H L, MU S C, PAN M, YUAN R Z. Progress on synthesis of Pt/CNTs electro-catalyst for proton exchange membrane fuel cell[J]. Chinese Journal of Power Sources, 2004,28(10):652-655.  

    6. [6]

      WU Z P, ZHANG W B, YIN Y H, LI Y S, CHEN Y S, YANG J G, LIU Y, XU Q F. Preparation of highly dispersed and ultrafine Pt particles on carbon nanotubes used as an effective electrochemical catalyst[J]. Rare Metal Mater. Eng., 2015,44(6):1351-1356.  

    7. [7]

      Jung N, Chung D Y, Ryu J, Yoo S J, Sung Y E. Pt-based nanoarchitecture and catalyst design for fuel cell applications[J]. Nano Today, 2014,9(4):433-456. doi: 10.1016/j.nantod.2014.06.006

    8. [8]

      Shahgaldi S, Hamelin J. Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: A critical review[J]. Carbon, 2015,94:705-728. doi: 10.1016/j.carbon.2015.07.055

    9. [9]

      Kim J, Lee S W, Carlton C, Shao-Horn Y. Pt-covered multiwall carbon nanotubes for oxygen reduction in fuel cell applications[J]. J. Phys. Chem. Lett., 2011,2(11):1332-1336. doi: 10.1021/jz200531z

    10. [10]

      Li L Y, Liu H Q, Wang L, Yue S Y, Tong X, Zaliznyak T, Taylor G T, Wong S S. Chemical strategies for enhancing activity and charge transfer in ultrathin pt nanowires immobilized onto nanotube supports for the oxygen reduction reaction[J]. ACS Appl. Mater. Interfaces, 2016,8(50):34280-34294. doi: 10.1021/acsami.6b07870

    11. [11]

      FU X B, YU H, PENG F, WANG H J, LÜ P. Preparation and characterization of highly dispersed platinum nanoparticles supported on carbon nanotubes[J]. Chinese J. Inorg. Chem., 2006,22(6):1148-1154. doi: 10.3321/j.issn:1001-4861.2006.06.034

    12. [12]

      Wang Q Q, Dai N N, Zheng J S, Zheng J P. Preparation and catalytic performance of Pt supported on Nafion® functionalized carbon nanotubes[J]. J. Electroanal. Chem., 2019,854113508. doi: 10.1016/j.jelechem.2019.113508

    13. [13]

      Xiao F, Meng Y, Lin Z P, Lei Y, Chen X H, Zhang J K, Lu H Y, Tong Y P, Liu G C, Xu J T. Highly boron-doped holey graphene for lithium oxygen batteries with enhanced electrochemical performance[J]. Carbon, 2022,189:404-412. doi: 10.1016/j.carbon.2021.12.061

    14. [14]

      Lei Z D, Chen H B, Yang M, Yang D G, Li H M. Boron and oxygencodoped porous carbon as efficient oxygen reduction catalysts[J]. Appl. Surf. Sci., 2017,426:294-300. doi: 10.1016/j.apsusc.2017.07.183

    15. [15]

      Rani P, Jindal V K. Designing band gap of graphene by B and N dopant atoms[J]. RSC Adv., 2013,3(3):802-812. doi: 10.1039/C2RA22664B

    16. [16]

      Van Khai T, Na H G, Kwak D S, Kwon Y J, Ham H, Shim K B, Kim H W. Comparison study of structural and optical properties of borondoped and undoped graphene oxide films[J]. Chem. Eng. J., 2012,211:369-377.

    17. [17]

      Vinayan B P, Jafri R I, Nagar R, Rajalakshmi N, Sethupathi K, Ramaprabhu S. Catalytic activity of platinum-cobalt alloy nanoparticles decorated functionalized multiwalled carbon nanotubes for oxygen reduction reaction in PEMFC[J]. Int. J. Hydrog. Energy, 2012,37(1):412-421. doi: 10.1016/j.ijhydene.2011.09.069

    18. [18]

      Ma Z H, Tian H, Meng G, Peng L X, Chen Y F, Chen C, Chang Z W, Cui X Z, Wang L J, Jiang W, Shi J L. Size effects of platinum particles@CNT on HER and ORR performance[J]. Sci. China Mater., 2020,63(12):2517-2529. doi: 10.1007/s40843-020-1449-2

    19. [19]

      YAO Y L, ZHANG D, XIA X H. Study on deposition mechanism of Pt nanoparticles on carbon nanotube[J]. Chinese J. Inorg. Chem., 2004,20(5):531-535.  

    20. [20]

      Gan J, Zhang J K, Zhang B Y, Chen W Y, Niu D F, Qin Y, Duan X Z, Zhou X G. Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition[J]. J. Energy Chem., 2020,45:59-66. doi: 10.1016/j.jechem.2019.09.024

    21. [21]

      Antolini E, Giorgi L, Pozio A, Passalacqua E. Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC[J]. J. Power Sources, 1999,77(2):136-142. doi: 10.1016/S0378-7753(98)00186-4

    22. [22]

      Jukk K, Kozlova J, Ritslaid P, Sammelselg V, Alexeyeva N, Tammeveski K. Sputter-deposited Pt nanoparticle/multi-walled carbon nanotube composite catalyst for oxygen reduction reaction[J]. J. Electroanal. Chem., 2013,708:31-38.

    23. [23]

      Yao R, Gu J, He H T, Yu T. Improved electrocatalytic activity and durability of Pt nanoparticles supported on boron-doped carbon black[J]. Catalysts, 2020,10(8)862.

    24. [24]

      Glavee G N, Klabunde K J, Sorensen C M, Hadjapanayis G C. Borohydride reductions of metal ions. a new understanding of the chemistry leading to nanoscale particles of metals, borides, and metal borates[J]. Langmuir, 1992,8(3):771-773.

    25. [25]

      He D P, Zhang L B, He D S, Zhou G, Lin Y, Deng Z X, Hong X, Wu Y E, Chen C, Li Y D. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction[J]. Nat. Commun., 2016,7(1)12362.

    26. [26]

      Stamenkovic V, Mun B S, Mayrhofer K J, Ross P N, Markovic N M, Rossmeisl J, Greeley J, Nørskov J K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure[J]. Angew. Chem. Int. Ed., 2006,45(18):2897-2901.

    27. [27]

      Viswanathan V, Hansen H A, Rossmeisl J, Nørskov J K. Universality in oxygen reduction electrocatalysis on metal surfaces[J]. ACS Catal., 2012,2(8):1654-1660.

    28. [28]

      He D P, Mu S C, Pan M. Perfluorosulfonic acid-functionalized Pt/carbon nanotube catalysts with enhanced stability and performance for use in proton exchange membrane fuel cells[J]. Carbon, 2011,49(1):82-88.

    29. [29]

      Yin S B, Shen P K, Song S Q, Jiang S P. Functionalization of carbon nanotubes by an effective intermittent microwave heating-assisted HF/H2O2 treatment for electrocatalyst support of fuel cells[J]. Electrochim. Acta, 2009,54(27):6954-6958.

    30. [30]

      Hussain S, Erikson H, Kongi N, Merisalu M, Ritslaid P, Sammelselg V, Tammeveski K. Heat-treatment effects on the ORR activity of Pt nanoparticles deposited on multi-walled carbon nanotubes using magnetron sputtering technique[J]. Int. J. Hydrog. Energy, 2017,42(9):5958-5970.

    31. [31]

      He C X, Song S Q, Liu J C, Maragou V, Tsiakaras P. Koh-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction[J]. J. Power Sources, 2010,195(21):7409-7414.

    32. [32]

      Molina-García M A, Rees N V. Effect of Catalyst carbon supports on the oxygen reduction reaction in alkaline media: A comparative study[J]. RSC Adv., 2016,6(97):94669-94681.

    33. [33]

      Bogdanovskaya V, Vernigor I, Radina M, Andreev V, Korchagin O. Nanocomposite cathode catalysts containing platinum deposited on carbon nanotubes modified by O, N, and P atoms[J]. Catalysts, 2021,11(3)335.

    34. [34]

      Kim H, Jeong N J, Lee S J, Song K S. Electrochemical deposition of Pt nanoparticles on CNTs for fuel cell electrode[J]. Korean J. Chem. Eng., 2008,25(3):443-445.

    35. [35]

      Liu J, Yin J, Feng B, Xu T, Wang F. Enhanced electrocatalytic activity and stability toward the oxygen reduction reaction with unprotected Pt nanoclusters[J]. Nanomaterials, 2018,8(11)955.

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(4)
  • Abstract views(509)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return