Citation: Hui-Na CUI, Wen-Bin DONG, Gang-Li LIAO, Zhen ZHAO, Yao YAO. Hydrogen evolution reaction performance of Se doped WO3·0.5H2O/g-C3N4 photo electrocatalyst[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(1): 109-116. doi: 10.11862/CJIC.2022.261 shu

Hydrogen evolution reaction performance of Se doped WO3·0.5H2O/g-C3N4 photo electrocatalyst

  • Corresponding author: Yao YAO, yaoyao_zz308@163.com
  • Received Date: 16 July 2022
    Revised Date: 24 October 2022

Figures(6)

  • A simple one-pot method was used to prepare the Se doped WO3·0.5H2O/g-C3N4 (Se/WCN) electrocatalyst. The crystal phase structure, morphology, and chemical composition were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and X-ray photoelectron spectroscopy (XPS). The electrochemical performance was measured by linear sweep voltammetry, electrochemical impedance, and chronoamperometry in 1 mol·L-1 H2SO4 solution. The results showed that the prepared Se/WCN-1 had the best electrochemical performance when the mass ratio of Se doping to g-C3N4 was 1∶1, and the overpotential was -0.75 V (vs RHE) at the current density of 70 mA·cm-2. After exposure to light, the initial potential of Se/WCN-1 decreased from -0.75 to -0.65 V (vs RHE), and charge-transfer resistance decreased from 371.4 to 310.0 Ω.
  • 加载中
    1. [1]

      Yang H C, Zhang S W, Cao R Y, Deng X L, Li Z P, Xu X J. Constructing the novel ultrafine amorphous iron oxyhydroxide/g-C3N4 nanosheets heterojunctions for highly improved photocatalytic performance[J]. Sci. Rep., 2017,7(1)8686. doi: 10.1038/s41598-017-09283-1

    2. [2]

      Zhu Q H, Xu Z H, Qiu B C, Xing M Y, Zhang J L. Emerging cocatalysts on g-C3N4 for photocatalytic hydrogen evolution[J]. Small, 2021,17(40)2101070. doi: 10.1002/smll.202101070

    3. [3]

      Zuo S Y, Zan J, Li D Y, Guan Z Y, Yang F, Xu H M, Huang M Z, Xia D S. Efficient peroxymonosulfate nonradical activity of Zn-Mn-Al2O3 @g-C3N4 via synergism of Zn, Mn doping and g-C3N4 composite[J]. Sep. Purif. Technol., 2021,272118965. doi: 10.1016/j.seppur.2021.118965

    4. [4]

      Liu X L, Ma R, Zhuang L, Hu B W, Chen J R, Liu X Y, Wang X K. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants[J]. Crit. Rev. Environ. Sci. Technol., 2020,51(8):751-790.

    5. [5]

      Zhang M, Liu X Z, Zeng X, Wang M F, Shen J Y, Liu R Y. Photocatalytic Degradation of toluene by In2S3/g-C3N4 heterojunctions[J]. Chem. Phy. Lett., 2020,738100049. doi: 10.1016/j.cpletx.2020.100049

    6. [6]

      Zeng P, Ji X Y, Su Z G, Zhang S P. WS2/g-C3N4 Composite as an efficient heterojunction photocatalyst for biocatalyzed artificial photosynthesis[J]. RSC Adv., 2018,8(37):20557-20567. doi: 10.1039/C8RA02807A

    7. [7]

      Tran H H, Thi M D N, Nguyen V P, Thi L N, Phan T T T, Hoang Q D, Luc H H, Kim S J, Vo V. One-pot synthesis of S-scheme MoS2/g-C3N4 heterojunction as effective visible light photocatalyst[J]. Sci. Rep., 2021,11(1)14787. doi: 10.1038/s41598-021-94129-0

    8. [8]

      Liu Y F, Ma Z. TiOF2/g-C3N4 Composite for visible-light driven photocatalysis[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2021,618126471. doi: 10.1016/j.colsurfa.2021.126471

    9. [9]

      Fu J W, Yu J G, Jiang C J, Cheng B. g-C3N4-based heterostructured photocatalysts[J]. Adv. Energy Mater., 2018,8(3)1701503. doi: 10.1002/aenm.201701503

    10. [10]

      Yao Y, Ji F, Yin M, Ren X, Ma Q, Yan J, Liu S F. Ag Nanoparticlesensitized WO3 hollow nanosphere for localized surface plasmon enhanced gas sensors[J]. ACS. Appl. Mater Interfaces, 2016,8(28):18165-18172. doi: 10.1021/acsami.6b04692

    11. [11]

      Dutta V, Sharma S, Raizada P, Thakur V K, Khan A A P, Saini V, Asiri A M, Singh P. An overview on WO3 based photocatalyst for environmental remediation[J]. J. Environ. Chem. Eng., 2021,9(1)105018. doi: 10.1016/j.jece.2020.105018

    12. [12]

      Deng Y H, Tan Y W, Tang H Q, Xiang Y, Zhu J, Wu W, Xu Y F, Zou H, Zhou Y. Hydrothermal synthesis of Bi-doped WO3·0.5H2O material with tetragonal pyramid-like structure and its enhanced photocatalytic activity[J]. ChemistrySelect, 2020,5(13):3917-3922. doi: 10.1002/slct.202000597

    13. [13]

      Zhu Y, Yao Y G, Chen Z, Zhang Z T, Zhang P, Cheng Z F, Gao Y F. WO3 quantum dot photochromical film[J]. Sol. Energy Mater. Sol. Cells, 2022,239111664. doi: 10.1016/j.solmat.2022.111664

    14. [14]

      Korkrit S, Zhang D D, Cao J, Zhang X Y, Soorathep K, Chakrit S, Adisorn T, Panyawat W, Qin J Q. Flower-like W/WO3 as a novel cathode for aqueous zinc-ion batteries[J]. Chem. Commun., 2021,57(61):7549-7552. doi: 10.1039/D1CC01612A

    15. [15]

      Shandilya P, Sambyal S, Sharma R, Mandyal P, Fang B. Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts[J]. J. Hazard Mater., 2022,428128218. doi: 10.1016/j.jhazmat.2022.128218

    16. [16]

      Nekita S, Nagashima K, Zhang G Z, Wang Q L, Kanai M, Takahashi T, Hosomi T, Nakamura K, Okuyama T, Yanagida T. Face-selective crystal growth of hydrothermal tungsten oxide nanowires for sensing volatile molecules[J]. ACS Appl. Nano Mater., 2020,3(10):10252-10260. doi: 10.1021/acsanm.0c02194

    17. [17]

      Yao Y, Dong W B, Zhao Z, Cui H N, Liao G L. Vertically aligned 1TWS2 nanosheets supported on carbon cloth as a high-performance flexible photocatalyst[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2022,649129533. doi: 10.1016/j.colsurfa.2022.129533

    18. [18]

      Yin X, Qiu W X, Li W Z, Wang K K, Yang X T, Du L B, Liu Y, Li J. Effects of alkali ion on boosting WO3 photoelectrochemical performance by electrochemical doping[J]. Int. J. Hydrog. Energy, 2020,45(38):19257-19266. doi: 10.1016/j.ijhydene.2020.05.057

    19. [19]

      Thwala M M, Dlamini L N. Improved photocatalytic activity of Ydoped WO3 in reduction of Cu? in industrial effluent[J]. Int. J. Environ. Sci. Technol., 2019,16(8):4887-4898. doi: 10.1007/s13762-019-02225-6

    20. [20]

      Zhang L J, Hao X Q, Li Y B, Jin Z L. Performance of WO3/g-C3N4 heterojunction composite boosting with NiS for photocatalytic hydrogen evolution[J]. Appl. Surf. Sci., 2020,499143862. doi: 10.1016/j.apsusc.2019.143862

    21. [21]

      Sun H L, Song F, Zhou C M, Wan X Y, Jin Y G, Dai Y H, Zheng J W, Yao S Y, Yang Y H. Lattice-water-induced acid sites in tungsten oxide hydrate for catalyzing fructose dehydration[J]. Catal. Commun., 2021,149106254. doi: 10.1016/j.catcom.2020.106254

    22. [22]

      Li H P, Liu J G, Hou W G, Du N, Zhang R J, Tao X T. Synthesis and characterization of g-C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity[J]. Appl. Catal. B-Environ., 2014,160-161:89-97. doi: 10.1016/j.apcatb.2014.05.019

    23. [23]

      Cao S, Low J, Yu J, Jaroniec M. Polymeric photocatalysts based on graphitic carbon nitride[J]. Adv. Mater., 2015,27(13):2150-2176. doi: 10.1002/adma.201500033

    24. [24]

      Jethwa V P, Patel K, Pathak V M, Solanki G K. Enhanced electrical and optoelectronic performance of SnS crystal by Se doping[J]. J. Alloy. Compd., 2021,883160941. doi: 10.1016/j.jallcom.2021.160941

    25. [25]

      Zhou Q S, Xiang M, Li D, Li X B, Qi T G, Peng Z H, Liu G H. Effect of iron valence on hydrothermal preparation of pyrochlore-type tungsten oxide[J]. Trans. Nonferrous Met. Soc. China, 2019,29(5):1099-1106. doi: 10.1016/S1003-6326(19)65018-1

    26. [26]

      Zhang R, Yang L, Huang X N, Chen T, Qu F L, Liu Z A, Du G, Asiri A M, Sun X P. Se doping: An effective strategy toward Fe2O3 nanorod arrays for greatly enhanced solar water oxidation[J]. J. Mater. Chem. A, 2017,5(24):12086-12090. doi: 10.1039/C7TA03304D

    27. [27]

      Xu J, Wei Z N, Zhang S K, Wang X X, Wang Y H, He M Y, Huang K J. Hierarchical WSe2 nanoflower as a cathode material for rechargeable Mg-ion batteries[J]. J. Colloid Interface Sci., 2021,588:378-383. doi: 10.1016/j.jcis.2020.12.083

    28. [28]

      Ge L, Han C C, Liu J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange[J]. Appl. Catal. B-Environ., 2011,108-109:100-107. doi: 10.1016/j.apcatb.2011.08.014

    29. [29]

      Wang D B, Huang X Q, Huang Y, Yu X, Lei Y, Dong X Y, Su Z L. Self-assembly synthesis of petal-like Cl-doped g-C3N4 nanosheets with tunable band structure for enhanced photocatalytic activity[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2021,611125780. doi: 10.1016/j.colsurfa.2020.125780

    30. [30]

      Ren X, Ma Q, Fan H, Pang L, Zhang Y, Yao Y, Ren X, Liu S F. A Sedoped MoS2 nanosheet for improved hydrogen evolution reaction[J]. Chem. Commun., 2015,51(88):15997-16000. doi: 10.1039/C5CC06847A

    31. [31]

      Yao Y, Jin Z W, Chen Y H, Gao Z F, Yan J Q, Liu H B, Wang J Z, Li Y L, Liu S Z. Graphdiyne-WS2 2D-nanohybrid electrocatalysts for high-performance hydrogen evolution reaction[J]. Carbon, 2018,129:228-235. doi: 10.1016/j.carbon.2017.12.024

    32. [32]

      Yang D R, Wang G X, Wang X. Photo-and thermo-coupled electrocatalysis in carbon dioxide and methane conversion[J]. Sci. China Mater., 2019,62(10):1369-1373. doi: 10.1007/s40843-019-9455-3

    33. [33]

      Jonn R G, Marcel A, Helmut S. Direct synthesis and single crystal structure determination of cubic pyrochlore-type tungsten trioxide hemthydrate WO3·0[J]. Mater. Res. Bull., 1989:289-292.

    34. [34]

      Zhang Y J, Wang G, Tao J Y, Zhao X L, Liu C C, Wang S P, Li S Y, Yang X W. Advances in the mass transport for 2D nano-catalyst: Toward superior electrocatalytic water splitting[J]. FlatChem, 2019,14100087. doi: 10.1016/j.flatc.2019.100087

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    7. [7]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    8. [8]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    9. [9]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    10. [10]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    17. [17]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    18. [18]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(3)
  • Abstract views(957)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return