Citation: Yan-Ling SONG, Qi-Yuan ZHANG, Ai-Hua YAO. Template-free electrodeposition and electrochromic performance of porous WO3·2H2O thin film[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(1): 127-134. doi: 10.11862/CJIC.2022.260 shu

Template-free electrodeposition and electrochromic performance of porous WO3·2H2O thin film

  • Corresponding author: Ai-Hua YAO, 07182@tongji.edu.cn
  • Received Date: 3 August 2022
    Revised Date: 4 November 2022

Figures(6)

  • Compared with anhydrous WO3, tungsten oxide dihydrate (WO3·2H2O) shows superior electrochromic properties because of its unique layered structure and rich interlayer structural water. In this study, WO3·2H2O films were successfully fabricated on indium tin oxide (ITO) glass substrates using a facile, template-free cathodic electrodeposition method. The composition of the electrodeposition solution was optimized by modifying the volume of hydrogen peroxide (H2O2) added into the solution, and thus highly porous films were obtained. The thus deposited WO3·2H2O films exhibited excellent electrochromic performance, including significant optical contrast of over 90% at 633 nm, a fast switching speed of fewer than 10 s, and a long cycling lifetime (90% original optical modulation was retained after 10 000 cycles).
  • 加载中
    1. [1]

      Huang Y, Wang B S, Chen F X, Han Y, Zhang W S, Wu X K, Li R, Jiang Q Y, Jia X L, Zhang R F. Electrochromic materials based on ions insertion and extraction[J]. Adv. Opt. Mater., 2022,102101783. doi: 10.1002/adom.202101783

    2. [2]

      Pan J B, Zheng R Z, Wang Y, Ye X K, Wan Z Q, Jia C Y, Weng X L, Xie J L, Deng L J. A high-performance electrochromic device assembled with hexagonal WO3 and NiO/PB composite nanosheet electrodes towards energy storage smart window[J]. Sol. Energy Mater. Sol. Cells, 2020,207110337. doi: 10.1016/j.solmat.2019.110337

    3. [3]

      Granqvist C G. Electrochromics for smart windows: Oxide-based thin films and devices[J]. Thin Solid Films, 2014,564:1-38. doi: 10.1016/j.tsf.2014.02.002

    4. [4]

      Wang L, Guo M R, Zhan J, Jiao X L, Chen D R, Wang T. A new design of an electrochromic energy storage device with high capacity, long cycle lifetime and multicolor display[J]. J. Mater. Chem. A, 2020,8:17098-17105. doi: 10.1039/D0TA04824K

    5. [5]

      Wu W, Wang M, Ma J M, Cao Y L, Deng Y H. Electrochromic metal oxides: Recent progress and prospect[J]. Adv. Electron. Mater., 2018,41800185. doi: 10.1002/aelm.201800185

    6. [6]

      Wang Y A, Meng Z H, Chen H, Li T, Zheng D J, Xu Q C, Wang H, Liu X Y, Guo W X. Pulsed electrochemical deposition of porous WO3 on silver networks for highly flexible electrochromic devices[J]. J. Mater. Chem. C, 2019,7:1966-1973. doi: 10.1039/C8TC05698F

    7. [7]

      Sun W M, Yeung M T, Lech A T, Lin C W, Lee C, Li T Q, Duan X F, Zhou J, Kaner R B. High surface area tunnels in hexagonal WO3[J]. Nano Lett., 2015,15:4834-4838. doi: 10.1021/acs.nanolett.5b02013

    8. [8]

      Mitchell J B, Lo W C, Genc A, LeBeau J, Augustyn V. Transition from battery to pseudocapacitor behavior via structural water in tungsten oxide[J]. Chem. Mater., 2017,29:3928-3937. doi: 10.1021/acs.chemmater.6b05485

    9. [9]

      Bi Z J, Li X M, Chen Y B, He X L, Xu X K, Gao X D. Large-scale multifunctional electrochromic-energy storage device based on tungsten trioxide monohydrate nanosheets and Prussian white[J]. ACS Appl. Mater. Interfaces, 2017,9:29872-29880. doi: 10.1021/acsami.7b08656

    10. [10]

      Xie Z, Gao L N, Liang B, Wang X F, Chen G, Liu Z, Chao J F, Chen D, Shen G Z. Fast fabrication of a WO3·2H 2O thin film with improved electrochromic properties[J]. J. Mater. Chem., 2012,22:19904-19910. doi: 10.1039/c2jm33622g

    11. [11]

      Wang Z, Gong W B, Wang X Y, Chen Z G, Chen X L, Chen J, Sun H Z, Song G, Cong S, Geng F X, Zhao Z G. Remarkable near-infrared electrochromism in tungsten oxide driven by interlayer water-induced battery-to-pseudocapacitor transition[J]. ACS Appl. Mater. Interfaces, 2020,12:33917-33925. doi: 10.1021/acsami.0c08270

    12. [12]

      Cai G F, Cui M Q, Kumar V, Darmawan P, Wang J X, Wang X, Eh A L, Qian K, Lee P S. Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity[J]. Chem. Sci., 2016,7:1373-1382. doi: 10.1039/C5SC03727A

    13. [13]

      Baeck S H, Choi K S, Stucky J G D, McFarland E W. Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films[J]. Adv. Mater., 2003,15:1269-1273. doi: 10.1002/adma.200304669

    14. [14]

      Qi C X, Tan Z, Feng Z H, Yu L P. Fabrication of bowl-like porous WO3 film by colloidal crystal template-assisted electrodeposition method[J]. J. Mater. Sci. Mater. Electron., 2014,25:1553-1558.

    15. [15]

      Giannouli M, Leftheriotis G. The effect of precursor aging on the morphology and electrochromic performance of electrodeposited tungsten oxide films[J]. Sol. Energy Mater. Sol. Cells, 2011,95:1932-1939. doi: 10.1016/j.solmat.2011.02.024

    16. [16]

      Kim C Y, Lee M, Huh S H, Kim E K. WO3 thin film coating from H2O-controlled peroxotungstic acid and its electrochromic properties[J]. J. Sol-Gel Sci. Technol., 2010,53:176-183. doi: 10.1007/s10971-009-2074-3

    17. [17]

      Yamanaka K. Electrodeposited films from aqueous tungstic acidhydrogen peroxide solutions for electrochromic display devices[J]. J. Appl. Phys., 1987,26:1884-1890. doi: 10.1143/JJAP.26.1884

    18. [18]

      Nakajima H, Tanaka H, Hibino M, Kudo T, Mizuno N. Reaction of nitrides of molybdenum and tungsten with hydrogen peroxide to form inorganic proton conductors[J]. Bull. Chem. Soc. Jpn., 1998,71:955-960. doi: 10.1246/bcsj.71.955

    19. [19]

      LIN H Q, LI H M, YU X Y, ZHAI H S, YUAN Y Z, WAN H L. Raman study of transformation behaviors of tungsten-containing peroxo species affected by different precursors and solution acidities[J]. Acta Chim. Sinica, 2004,62(18):1780-1784. doi: 10.3321/j.issn:0567-7351.2004.18.021

    20. [20]

      Pecquenard B, Castro-Garcia S, Livage J, Zavalij P Y, Whittingham S, Thouvenot R. Structure of hydrated tungsten peroxides[WO2(O2) H2O]·nH2O[J]. Chem. Mater., 1998,10:1882-1888. doi: 10.1021/cm980045n

    21. [21]

      Wang S L, Dou K, Zou Y S, Dong Y H, Li J B, Ju D, Zeng H B. Assembling tungsten oxide hydrate nanocrystal colloids formed by laser ablation in liquid into fast-response electrochromic films[J]. J. Colloid Interface Sci., 2017,489:85-91. doi: 10.1016/j.jcis.2016.08.072

    22. [22]

      Meulenkamp E A. Mechanism of WO3 electrodeposition from peroxy-tungstate solution[J]. J. Electrochem. Soc., 1997,144:1664-1671. doi: 10.1149/1.1837657

  • 加载中
    1. [1]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    2. [2]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    4. [4]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    5. [5]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    6. [6]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    7. [7]

      Tinghui ANDong XIANGJiaqi LIJiawei WANGShuming YUNan WANGKedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    10. [10]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    15. [15]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    16. [16]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Haiying Jiang Liuhong Song Yangyang Cheng Kefen Yue Mingli Peng Huilin Guo . Ph―C≡C―Cu2.5的力致变色现象探究——推荐一个物理化学实验. University Chemistry, 2025, 40(8): 249-254. doi: 10.12461/PKU.DXHX202410003

    18. [18]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    19. [19]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    20. [20]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

Metrics
  • PDF Downloads(30)
  • Abstract views(2726)
  • HTML views(803)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return