Citation: Pei-Song LIU, Li-Jun SONG, Chao-Lian HUANG, Lei HU, Xiao-Ying LU, Qi JIANG. Effects of manganese sources on the high temperature performance of spinel LiMn2O4[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(1): 55-62. doi: 10.11862/CJIC.2022.258 shu

Effects of manganese sources on the high temperature performance of spinel LiMn2O4

Figures(5)

  • To research the effect of different manganese sources on the prepared spinel LiMn2O4 (LMO), the precursors of the manganese sources were prepared by the precipitation method. And then, the most commonly used manganese oxides (MnO2, Mn2O3, and Mn3O4) were prepared by different calcination temperatures. The LMO cathode materials were prepared with manganese oxides under the same preparation conditions. And the relationship between manganese sources and the electrochemical performance of the obtained cathode materials was investigated by examining the morphology and electrochemical properties of LMO. The research result showed that different manganese oxides with different morphological structures can be obtained from the same precursor at different calcination temperatures. The morphology structures of LMOs and the contents and sizes of octahedral crystals were different. LMO prepared from Mn2O3 had the most octahedral crystals and the most uniform size. It also had the best capacity performance, rate performance, and cycle performance among the three LMOs: the first discharge-specific capacity was 131.8 mAh·g-1 (0.2C); the discharge-specific capacity of 100.4 mAh·g-1 at 3C; after 100 cycles at 0.5C (half-cell), the discharge specific capacity was still 116.0 mAh·g-1, and the capacity retention rate was 93.9%, which is far superior to the other two LMOs, indicating a good application prospect. Even at a high temperature of 55 ℃, LMO from Mn2O3 exhibited significantly higher rate performance and stronger anti-attenuation ability than the other two LMOs.
  • 加载中
    1. [1]

      Croguennec L, Palacin M R. Recent achievements on inorganic electrode materials for lithium-ion batteries[J]. J. Am. Chem. Soc., 2015,137(9):3140-3156. doi: 10.1021/ja507828x

    2. [2]

      Luo J Y, Wang Y G, Xiong H M, Xia Y Y. Ordered mesoporous spinel LiMn2O4 by a soft-chemical process as a cathode material for lithiumion batteries[J]. Chem. Mater., 2007,19(19):4791-4795. doi: 10.1021/cm0714180

    3. [3]

      Jiang C H, Tang Z L, Deng S Q, Hong Y, Wang S T, Zhang Z T. High-performance carbon-coated mesoporous LiMn2O4 cathode materials synthesized from a novel hydrated layered-spinel lithium manganate composite[J]. RSC Adv., 2017,7(7):3746-3751. doi: 10.1039/C6RA25802F

    4. [4]

      Amatucci G, Tarascon J M. Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries[J]. J. Electrochem. Soc., 2002,149(12):K31-K46. doi: 10.1149/1.1516778

    5. [5]

      Amatucci G G, Schmutz C N, Blyr A, Sigala C, Gozdz A S, Larcher D, Tarascon J M. Materials' effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries[J]. J. Power Sources, 1997,69(1):11-25.

    6. [6]

      Yamada A, Tanaka M, Tanaka K, Sekai K. Jahn-Teller instability in spinel Li-Mn-O[J]. J. Power Sources, 1999,81:73-78.

    7. [7]

      Xia Y, Zhou Y, Yoshio M. Capacity fading on cycling of 4V Li/LiMn2O4 cells[J]. J. Electrochem. Soc., 1997,144(8):2593-2600. doi: 10.1149/1.1837870

    8. [8]

      Fang H S, Li L P, Yang Y, Yan G F, Li G S. Low-temperature synthesis of highly crystallized LiMn2O4 from alpha manganese dioxide nanorods[J]. J. Power Sources, 2008,184(2):494-497. doi: 10.1016/j.jpowsour.2008.04.011

    9. [9]

      Hai Y, Zhang Z W, Liu H, Liao L B, Fan P, Wu Y Y, L v, G C, Mei L F. Facile controlled synthesis of spine LiMn2O4 porous microspheres as cathode material for lithium ion batteries[J]. Front. Chem., 2019,7437. doi: 10.3389/fchem.2019.00437

    10. [10]

      Zhang X, Xing Z, Yu Y, Li Q W, Tang K B, Huang T, Zhu Y C, Qian Y T, Chen D. Synthesis of Mn3O4 nanowires and their transformation to LiMn2O4 polyhedrons, application of LiMn2O4 as a cathode in a lithium-ion battery[J]. CrystEngComm, 2012,14(4):1485-1489. doi: 10.1039/C1CE06289A

    11. [11]

      Gao Y K, Peng J Q, Duan Z H, Hu A L, Lu X Y, Jiang Q. Preparation of spheroidal spinel LiMn2O4 and its high temperature performance[J]. J. Electrochem. Soc., 2019,166(13):A2903-A2909. doi: 10.1149/2.0731913jes

    12. [12]

      Huang C L, Zhang R B, Gao Y K, Lu X Y, Jiang Q, Zhang H, Li Z C. Effects of lithium salt addition methods on the high-temperature electrochemical performance of LiMn2O4[J]. J. Electrochem. Soc., 2021,168(9)090509. doi: 10.1149/1945-7111/ac208f

    13. [13]

      Li W, Siqin G W, Zhu Z, Qi L, Tian W H. Electrochemical properties of niobium and phosphate doped spherical Li-rich spinel LiMn2O4 synthesized by ion implantation method[J]. Chinese Chem. Lett., 2017,28(7):1438-1446. doi: 10.1016/j.cclet.2017.03.035

    14. [14]

      Li X F, Xu Y L. Spinel LiMn2O4 active material with high capacity retention[J]. Appl. Surf. Sci., 2007,253(21):8592-8596. doi: 10.1016/j.apsusc.2007.04.070

    15. [15]

      Ding Y L, Xie J A, Cao G S, Zhu T J, Yu H M, Zhao X B. Singlecrystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries[J]. Adv. Funct. Mater., 2011,21(2):348-355. doi: 10.1002/adfm.201001448

    16. [16]

      Lee J F, Tsai Y W, Santhanam R, Hwang B J, Yang M H, Liu D G. Local structure transformation of nano-sized Al-doped LiMn2O4 sintered at different temperatures[J]. J. Power Sources, 2003,119:721-726.

    17. [17]

      Bakierska M, Swietoslawski M, Dziembaj R, Molenda M. Nature of the electrochemical properties of sulphur substituted LiMn2O4 spinel cathode material studied by electrochemical impedance spectroscopy[J]. Materials, 2016,9(8):2-12.

    18. [18]

      Koao L F, Motloung S V, Motaung T E, Kebede M A. Influence of ammonium hydroxide solution on LiMn2O4 nanostructures prepared by modified chemical bath method[J]. Physica B, 2018,535:323-329. doi: 10.1016/j.physb.2017.08.016

    19. [19]

      Guo J C, Xu Y H, Wang C S. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries[J]. Nano Lett., 2011,11(10):4288-4294. doi: 10.1021/nl202297p

    20. [20]

      Zhang S S, Xu K, Jow T R. Understanding formation of solid electrolyte interface film on LiMn2O4 electrode[J]. J. Electrochem. Soc., 2002,149(12):A1521-A1526. doi: 10.1149/1.1516220

    21. [21]

      He Y B, Liu M, Huang Z D, Zhang B, Yu Y, Li B H, Kang F Y, Kim J K. Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries[J]. J. Power Sources, 2013,239:269-276. doi: 10.1016/j.jpowsour.2013.03.141

    22. [22]

      Zhan C, Wu T P, Lu J, Amine K. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes—A critical review[J]. Energ. Environ. Sci., 2018,11(2):243-257. doi: 10.1039/C7EE03122J

    23. [23]

      Jiang C H, Tang Z L, Wang S T, Zhang Z T. A truncated octahedral spinel LiMn2O4 as high-performance cathode material for ultrafast and long-life lithium-ion batteries[J]. J. Power Sources, 2017,357:144-148. doi: 10.1016/j.jpowsour.2017.04.079

    24. [24]

      Zhao H Y, Li D D, Wang Y S, Li F, Wang G F, Wu T T, Wang Z K, Li Y F, Su J X. Sol-Gel synthesis of silicon-doped lithium manganese oxide with enhanced reversible capacity and cycling stability[J]. Materials, 2018,11(8)1455. doi: 10.3390/ma11081455

    25. [25]

      Jiang Q, Gao Y K, Peng J Q, Li H, Liu Q Q, Jiang L, Lu X Y, Hu A L. Effects of polyvinyl alcohol on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material[J]. J. Solid State Electrochem., 2018,22(12):3807-3813. doi: 10.1007/s10008-018-4085-x

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    15. [15]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

Metrics
  • PDF Downloads(9)
  • Abstract views(1176)
  • HTML views(249)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return