Citation: Min ZHAO, Dong WU, Fei-Long JIANG, Qi-Hui CHEN, Mao-Chun HONG. A Flexible Ultramicroporous Metal-Organic Framework for Size-Selective Carbon Dioxide Capture Constructed from a Semirigid Ligand[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2459-2468. doi: 10.11862/CJIC.2022.256 shu

A Flexible Ultramicroporous Metal-Organic Framework for Size-Selective Carbon Dioxide Capture Constructed from a Semirigid Ligand

Figures(5)

  • Herein, a flexible ultramicroporous metal-organic framework {[Co(DTBDA)]·4H2O}n (FJI-H35) was prepared from a semirigid ligand 3', 5'-di(1H-1, 2, 4-triazol-1-yl)-(1, 1'-biphenyl)-3, 5-dicarboxylic acid (H2DTBDA) and cobalt nitrate. After activation, FJI-H35 underwent an adaptive structural transformation, making the pore diameter shrink from 0.43 to 0.37 nm. Gas adsorption tests showed that FJI-H35 could selectively capture CO2 from N2 and CH4 with a high adsorption selectivity of 178 and a relatively low adsorption enthalpy (28.2 kJ·mol-1). Breakthrough experiments further confirmed that FJI-H35 could efficiently and selectively capture CO2 from CO2/N2 (15∶85, V/V) and CO2/CH4 (50∶50, V/V) mixtures.
  • 加载中
    1. [1]

      Hepburn C, Adlen E, Beddington J, Carter E A, Fuss S, Mac Dowell N, Minx J C, Smith P, Williams C K. The Technological and Economic Prospects for CO2 Utilization and Removal[J]. Nature, 2019,575:87-97. doi: 10.1038/s41586-019-1681-6

    2. [2]

      Yousef A M, El-Maghlany W M, Eldrainy Y A, Attia A. Low-Temperature Distillation Process for CO2/N2 Separation: A Study for Avoiding CO2 Freeze-Out[J]. J. Heat Trans., 2018,140(4)042001. doi: 10.1115/1.4038193

    3. [3]

      Zhang Y, Zhou Q, Qiu Z F, Zhang X Y, Chen J Q, Zhao Y, Gong F, Sun W Y. Tailoring Coordination Microenvironment of Cu(Ⅰ) in Metal-Organic Frameworks for Enhancing Electroreduction of CO2 to CH4[J]. Adv. Funct. Mater., 2022,32(36)2203677. doi: 10.1002/adfm.202203677

    4. [4]

      Cheng X M, Wang P, Wang S Q, Zhao J, Sun W Y. Ti(Ⅳ)-MOF with Specific Facet-Ag Nanoparticle Composites for Enhancing the Photocatalytic Activity and Selectivity of CO2 Reduction[J]. ACS Appl. Mater. Interfaces, 2022,14(28):32350-32359. doi: 10.1021/acsami.2c05037

    5. [5]

      Eddaoudi M, Moler D B, Li H L, Chen B L, Reineke T M, O'Keeffe M, Yaghi O M. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks[J]. Acc. Chem. Res., 2001,34(4):319-330. doi: 10.1021/ar000034b

    6. [6]

      Zhou D D, Chen P, Wang C, Wang S S, Du Y, Yan H, Ye Z M, He C T, Huang R K, Mo Z W, Huang N Y, Zhang J P. Intermediate-Sized Molecular Sieving of Styrene from Larger and Smaller Analogues[J]. Nat. Mater., 2019,18(9):994-998. doi: 10.1038/s41563-019-0427-z

    7. [7]

      Zhao D, Yu K L, Han X, He Y B, Chen B L. Recent Progress on Porous MOFs for Process-Efficient Hydrocarbon Separation, Luminescent Sensing, and Information Encryption[J]. Chem. Commun., 2022,58(6):747-770. doi: 10.1039/D1CC06261A

    8. [8]

      Yang H J, Wang Y X, Krishna R, Jia X X, Wang Y, Hong A N, Dang C, Castillo H E, Bu X H, Feng P Y. Pore-Space-Partition-Enabled Exceptional Ethane Uptake and Ethane-Selective Ethane-Ethylene Separation[J]. J. Am. Chem. Soc., 2020,142(5):2222-2227. doi: 10.1021/jacs.9b12924

    9. [9]

      Cui Y J, Li B, He H J, Zhou W, Chen B L, Qian G D. Metal-Organic Frameworks as Platforms for Functional Materials[J]. Acc. Chem. Res., 2016,49(3):483-493. doi: 10.1021/acs.accounts.5b00530

    10. [10]

      Qian Y Y, Li D D, Han Y L, Jiang H L. Photocatalytic Molecular Oxygen Activation by Regulating Excitonic Effects in Covalent Organic Frameworks[J]. J. Am. Chem. Soc., 2020,142(49):20763-20771. doi: 10.1021/jacs.0c09727

    11. [11]

      Wu D, Zhou K, Tian J D, Liu C P, Tian J Y, Jiang F L, Yuan D Q, Zhang J, Chen Q, Hong M C. Induction of Chirality in a Metal-Organic Framework Built from Achiral Precursors[J]. Angew. Chem. Int. Ed., 2021,60(6):3087-3094. doi: 10.1002/anie.202013885

    12. [12]

      Tian J Y, Liu L P, Zhou K, Hong Z X, Chen Q H, Jiang F L, Yuan D W, Sun Q F, Hong M C. Metal-Organic Tube or Layered Assembly: Reversible Sheet-To-Tube Transformation and Adaptive Recognition[J]. Chem. Sci., 2020,11(36):9818-9826. doi: 10.1039/D0SC01176B

    13. [13]

      Tian J Y, Jiang F L, Yuan D W, Zhang L J, Chen Q H, Hong M C. Electric-Field Assisted In Situ Hydrolysis of Bulk Metal-Organic Frameworks (MOFs) into Ultrathin Metal Oxyhydroxide Nanosheets for Efficient Oxygen Evolution[J]. Angew. Chem. Int. Ed., 2020,59(31):13101-13108. doi: 10.1002/anie.202004420

    14. [14]

      Yuan S, Feng L, Wang K C, Pang J D, Bosch M, Lollar C, Sun Y J, Qin J S, Yang X Y, Zhang P, Wang Q, Zou L F, Zhang Y M, Zhang L L, Fang Y, Li J L, Zhou H C. Stable Metal-Organic Frameworks: Design, Synthesis, and Applications[J]. Adv. Mater., 2018,30(37)e1704303. doi: 10.1002/adma.201704303

    15. [15]

      Wang X, Dong A R, Hu Y, Qian J J, Huang S M. A Review of Recent Work on Using Metal-Organic Frameworks to Grow Carbon Nanotubes[J]. Chem. Commun., 2020,56(74):10809-10823. doi: 10.1039/D0CC04015K

    16. [16]

      Xue Z Z, Meng X D, Li X Y, Han S D, Pan J, Wang G M. Luminescent Thermochromism and White-Light Emission of a 3D [Ag4Br6] Cluster-Based Coordination Framework with both Adamantane-like Node and Linker[J]. Inorg. Chem., 2021,60(7):4375-4379. doi: 10.1021/acs.inorgchem.1c00280

    17. [17]

      Mu Y, Wang D, Meng X D, Pan J, Han S D, Xue Z Z. Construction of Iodoargentates with Diverse Architectures: Template Syntheses, Structures, and Photocatalytic Properties[J]. Cryst. Growth Des., 2020,20(2):1130-1138. doi: 10.1021/acs.cgd.9b01448

    18. [18]

      ZHAO D, LIAO Z T, ZHANG W, CHEN Z Z, SUN W Y. Progress in Functional Metal-Organic Frameworks for Catalytic Conversion of Carbon Dioxide[J]. Chinese J. Inorg. Chem., 2021,37(7):1153-1176.  

    19. [19]

      Lin R B, Xiang S, Zhou W, Chen B. Microporous Metal-Organic Framework Materials for Gas Separation[J]. Chem, 2020,6(2):337-363. doi: 10.1016/j.chempr.2019.10.012

    20. [20]

      Liang W, Bhatt P M, Shkurenko A, Adil K, Mouchaham G, Aggarwal H, Mallick A, Jamal A, Belmabkhout Y, Eddaoudi M. A Tailor-Made Interpenetrated MOF with Exceptional Carbon-Capture Performance from Flue Gas[J]. Chem, 2019,5(4):950-963. doi: 10.1016/j.chempr.2019.02.007

    21. [21]

      Liao P Q, Chen X W, Liu S Y, Li X Y, Xu Y T, Tang M, Rui Z, Ji H, Zhang J P, Chen X M. Putting an Ultrahigh Concentration of Amine Groups into a Metal-Organic Framework for CO2 Capture at Low Pressures[J]. Chem. Sci., 2016,7(10):6528-6533. doi: 10.1039/C6SC00836D

    22. [22]

      Zhang L, Jiang K, Jiang M D, Yue D, Wan Y T, Xing H B, Yang Y, Cui Y J, Chen B L, Qian G D. A Highly Stable Amino-Coordinated MOF for Unprecedented Block Off N2 Adsorption and Extraordinary CO2/N2 Separation[J]. Chem. Commun., 2016,52(93):13568-13571. doi: 10.1039/C6CC07858C

    23. [23]

      Ding M, Flaig R W, Jiang H L, Yaghi O M. Carbon Capture and Conversion Using Metal-Organic Frameworks and MOF-Based Materials[J]. Chem. Soc. Rev., 2019,48(10):2783-2828. doi: 10.1039/C8CS00829A

    24. [24]

      Han L, Pham T, Zhuo M J, Forrest K A, Suepaul S, Space B, Zaworotko M J, Shi W, Chen Y, Cheng P, Zhang Z J. Molecular Sieving and Direct Visualization of CO2 in Binding Pockets of an Ultramicroporous Lanthanide Metal-Organic Framework Platform[J]. ACS Appl. Mater. Interfaces, 2019,11(26):23192-23197. doi: 10.1021/acsami.9b04619

    25. [25]

      Yang L F, Cui X L, Zhang Y B, Wang Q J, Zhang Z Q, Suo X, Xing H B. Anion Pillared Metal-Organic Framework Embedded with Molecular Rotors for Size-Selective Capture of CO2 from CH4 and N2[J]. ACS Sustain. Chem. Eng., 2019,7(3):3138-3144. doi: 10.1021/acssuschemeng.8b04916

    26. [26]

      Gong Y N, Xiong P, He C T, Deng J H, Zhong D C. A Lanthanum Carboxylate Framework with Exceptional Stability and Highly Selective Adsorption of Gas and Liquid[J]. Inorg. Chem., 2018,57(9):5013-5018. doi: 10.1021/acs.inorgchem.8b00082

    27. [27]

      Cui P, Li J J, Dong J, Zhao B. Modulating CO2 Adsorption in Metal-Organic Frameworks via Metal-Ion Doping[J]. Inorg. Chem., 2018,57(10):6135-6141. doi: 10.1021/acs.inorgchem.8b00730

    28. [28]

      MENG L L, CHENG H T, XUE D X, WANG Q, BAI J F. Synthesis and Selective CO2 Adsorption of a rtl-MOF Based upon 5-(3-Amino-pyridin-4-yl)-isophthalic Acid and [Cu2(COO4)] -Paddlewheel Unit[J]. Chinese J. Inorg. Chem., 2020,36(6):1098-1104.  

    29. [29]

      Wu D, Liu C P, Tian J Y, Jiang F L, Yuan D W, Chen Q H, Hong M C. Acid-Base-Resistant Metal-Organic Framework for Size-Selective Carbon Dioxide Capture[J]. Inorg. Chem., 2020,59(18):13542-13550. doi: 10.1021/acs.inorgchem.0c01912

    30. [30]

      Guo Z Y, Yan D, Wang H L, Tesfagaber D, Li X L, Chen Y S, Huang W Y, Chen B L. A Three-Dimensional Microporous Metal-Metallo-porphyrin Framework[J]. Inorg. Chem., 2015,54(1):200-204. doi: 10.1021/ic502116k

    31. [31]

      Liu S, Dong Q B, Wang D Q, Wang Y, Wang H J, Huang Y H, Wang S N, Liu L T, Duan J G. Interplay of Tri-and Bidentate Linkers to Evolve Micropore Environment in a Family of Quasi-3D and 3D Porous Coordination Polymers for Highly Selective CO2 Capture[J]. Inorg. Chem., 2019,58(23):16241-16249. doi: 10.1021/acs.inorgchem.9b02774

    32. [32]

      Wang Z, Zhang J H, Jiang J J, Wang H P, Wei Z W, Zhu X J, Pan M, Su C Y. A Stable Metal Cluster-Metalloporphyrin MOF with High Capacity for Cationic Dye Removal[J]. J. Mater. Chem. A, 2018,6(36):17698-17705. doi: 10.1039/C8TA06249H

    33. [33]

      Chen K J, Madden D G, Pham T, Forrest K A, Kumar A, Yang Q Y, Xue W, Space B, Perry J J, Zhang J P, Chen X M, Zaworotko M J. Tuning Pore Size in Square-Lattice Coordination Networks for Size-Selective Sieving of CO2[J]. Angew. Chem. Int. Ed., 2016,55(35):10268-10272. doi: 10.1002/anie.201603934

    34. [34]

      Nandi S, Collins S, Chakraborty D, Banerjee D, Thallapally P K, Woo T K, Vaidhyanathan R. Ultralow Parasitic Energy for Postcombustion CO2 Capture Realized in a Nickel Lsonicotinate Metal-Organic Framework with Excellent Moisture Stability[J]. J. Am. Chem. Soc., 2017,139(5):1734-1737. doi: 10.1021/jacs.6b10455

    35. [35]

      Ye Y X, Zhang H, Chen L J, Chen S M, Lin Q J, Wei F F, Zhang Z J, Xiang S C. Metal-Organic Framework with Rich Accessible Nitrogen Sites for Highly Efficient CO2 Capture and Separation[J]. Inorg. Chem., 2019,58(12):7754-7759. doi: 10.1021/acs.inorgchem.9b00182

    36. [36]

      Wang Z S, Li M, Peng Y L, Zhang Z, Chen W, Huang X C. An Ultrastable Metal Azolate Framework with Binding Pockets for Optimal Carbon Dioxide Capture[J]. Angew. Chem. Int. Ed., 2019,58(45):16071-16076. doi: 10.1002/anie.201909046

    37. [37]

      Shi C D, Tian J D, Jiang F L, Chen Q H, Hong M C. A Novel Co(Ⅱ)-Organic Framework with Multiple Active Sites for Selective Gas Adsorption[J]. Chin. J. Struct. Chem., 2021,40(2):169-174.

    38. [38]

      Yu M H, Zhang P, Feng R, Yao Z Q, Yu Y C, Hu T L, Bu X H. Construction of a Multi-cage-Based MOF with a Unique Network for Efficient CO2 Capture[J]. ACS Appl. Mater. Interfaces, 2017,9(31):26177-26183. doi: 10.1021/acsami.7b06491

    39. [39]

      Li N, Chang Z, Huang H L, Feng R, He W W, Zhong M, Madden D G, Zaworotko M J, Bu X H. Specific K+ Binding Sites as CO2 Traps in a Porous MOF for Enhanced CO2 Selective Sorption[J]. Small, 2019,15(22)e1900426. doi: 10.1002/smll.201900426

    40. [40]

      Zhang D S, Zhang Y Z, Zhang X, Wang F, Zhang J, Hu H, Gao J, Yan H, Liu H L, Ma H Y, Geng L L, Li Y W. Nanocage-Based Porous Metal-Organic Frameworks Constructed from Icosahedrons and Tetrahedrons for Selective Gas Adsorption[J]. ACS Appl. Mater. Interfaces, 2019,11(22):20104-20109. doi: 10.1021/acsami.9b05655

    41. [41]

      Liang L F, Liu C P, Jiang F L, Chen Q H, Zhang L J, Xue H, Jiang H L, Qian J J, Yuan D Q, Hong M C. Carbon Dioxide Capture and Conversion by an Acid-Base Resistant Metal-Organic Framework[J]. Nat. Commun., 2017,81233. doi: 10.1038/s41467-017-01166-3

    42. [42]

      Humby J D, Benson O, Smith G L, Argent S P, da Silva I, Cheng Y, Rudic S, Manuel P, Frogley M D, Cinque G, Saunders L K, Vitorica-Yrezabal I J, Whitehead G F S, Easun T L, Lewis W, Blake A J, Ramirez-Cuesta A J, Yang S, Schroder M. Host-Guest Selectivity in a Series of Isoreticular Metal-Organic Frameworks: Observation of Acetylene-To-Alkyne and Carbon Dioxide-To-Amide Interactions[J]. Chem. Sci., 2019,10(4):1098-1106. doi: 10.1039/C8SC03622E

    43. [43]

      Song X H, Zhang M X, Chen C, Duan J G, Zhang W W, Pan Y, Bai J F. Pure-Supramolecular-Linker Approach to Highly Connected Metal-Organic Frameworks for CO2 Capture[J]. J. Am. Chem. Soc., 2019,141(37):14539-14543. doi: 10.1021/jacs.9b07422

    44. [44]

      Song X H, Zhang M X, Chen C, Duan J G, Zhang W W, Pan Y, Bai J F. Constructing and Finely Tuning the CO2 Traps of Stable and Various-Pore-Containing MOFs towards Highly Selective CO2 Capture[J]. Chem. Commun., 2019,55(24):3477-3480. doi: 10.1039/C8CC10116G

    45. [45]

      Zhang J W, Qu P, Hu M C, Li S N, Jiang Y C, Zhai Q G. Topology-Guided Design for Sc-soc-MOFs and Their Enhanced Storage and Separation for CO2 and C2-Hydrocarbons[J]. Inorg. Chem., 2019,58(24):16792-16799. doi: 10.1021/acs.inorgchem.9b02959

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    18. [18]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

Metrics
  • PDF Downloads(7)
  • Abstract views(610)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return