Citation: Shi-Yu CAO, Bin-Jie CHEN, Fei-Fan YU, Xiang-Wei XU, Yu-Yuan YAO. Preparation of MoO2@nitrogen doped carbon composites for degradation of organic pollutants[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(1): 80-90. doi: 10.11862/CJIC.2022.255 shu

Preparation of MoO2@nitrogen doped carbon composites for degradation of organic pollutants

  • Corresponding author: Yu-Yuan YAO, yyy0571@126.com
  • Received Date: 29 June 2022
    Revised Date: 17 October 2022

Figures(8)

  • The MoO2@nitrogen doped carbon composite (MoO2@CN) was designed via one-step calcination from dopamine, ammonium molybdate, and ammonium bicarbonate. Besides, MoO2@CN was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, etc. The MoO2@CN/PMS system could reach 99.2% degradation rate for carbamazepine (CBZ) in 12 min under pH of 6.5 and temperature at 25 ℃. Moreover, the apparent rate constant (kobs) of MoO2@CN was calculated to be 0.393 min-1, about 24.0 times higher than that of the commercial MoO2 (0.016 4 min-1), which is attributed that MoO2@CN possessed better conductivity and larger specific surface area. MoO2@CN was capable to degrade CBZ effectively in the pH range of 2.5-10.5, and also exhibited effective degradation performance for most dyes, phenolic compounds, antibiotics, and other pollutants. In addition, the total organic carbon (TOC) degradation rate of CBZ was as high as 74.0% within 60 min in the MoO2@CN/PMS system. Electron paramagnetic resonance (EPR) spectroscopy and quenching tests were applied to verify that SO4·- and ·OH played a major role in the MoO2@CN/PMS system. Interestingly, the degradation performance of CBZ was significantly enhanced with high kobs value of 1.25 min-1 when MoO2@CN was introduced into the Fe2+/PMS system, which was about 15.7 times proceeding that of the Fe2+/PMS system (0.079 7 min-1). The phenomenon is mainly ascribed that MoO2@CN significantly accelerates the transition from Fe3+ to Fe2+, resulting in more ·OH production.
  • 加载中
    1. [1]

      Zhao Y, An H Z, Feng J, Ren Y M, Ma J. Impact of crystal types of AgFeO2 nanoparticles on the peroxymonosulfate activation in the water[J]. Environ. Sci. Technol., 2019,53(8):4500-4510. doi: 10.1021/acs.est.9b00658

    2. [2]

      Li X N, Huang X, Xi S B, Miao S, Ding J, Cai W Z, Liu S, Yang X L, Yang H B, Gao J J, Wang J H, Hang Y Q, Zhang T, Liu B. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis[J]. J. Am. Chem. Soc., 2018,140(39):12469-12475. doi: 10.1021/jacs.8b05992

    3. [3]

      Su C, Duan X G, Miao J, Zhou Y J, Zhou W, Wang S B, Shao Z P. Mixed conducting perovskite materials as superior catalysts for fast aqueous-phase advanced oxidation: a mechanistic study[J]. ACS Catal., 2017,7(1):388-397. doi: 10.1021/acscatal.6b02303

    4. [4]

      Waldemer R H, Tratnyek P G, Johnson R L, Nurmi J T. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products[J]. Environ. Sci. Technol., 2007,41(3):1010-1015. doi: 10.1021/es062237m

    5. [5]

      Zhang L, Guo X J, Yan F, Su M M, Li Y. Study of the degradation behaviour of dimethoate under microwave irradiation[J]. J. Hazard. Mater., 2007,149(3):675-679. doi: 10.1016/j.jhazmat.2007.04.039

    6. [6]

      Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J]. Environ. Sci. Technol., 2003,37(20):4790-4797. doi: 10.1021/es0263792

    7. [7]

      Smedley P L, Kinniburgh D G. Molybdenum in natural waters: A review of occurrence, distributions and controls[J]. Appl. Geochem., 2017,84:387-432. doi: 10.1016/j.apgeochem.2017.05.008

    8. [8]

      Ji J H, Bao Y, Liu X Y, Zhang J L, Xing M Y. Molybdenum-based heterogeneous catalysts for the control of environmental pollutants[J]. EcoMat, 2021,3(6)e12155.

    9. [9]

      Shen B, Dong C C, Ji J H, Xing M Y, Zhang J L. Efficient Fe(Ⅲ)/Fe(Ⅱ) cycling triggered by MoO2 in Fenton reaction for the degradation of dye molecules and the reduction of Cr(Ⅵ)[J]. Chin. Chem. Lett., 2019,30(12):2205-2210. doi: 10.1016/j.cclet.2019.09.052

    10. [10]

      Ji J, Aleisa R M, Duan H, Zhang J L, Yin Y D, Xing M Y. Metallic active sites on MoO2(110) surface to catalyze advanced oxidation processes for efficient pollutant removal[J]. iScience, 2020,23(2)100861. doi: 10.1016/j.isci.2020.100861

    11. [11]

      Chen X W, Vione D, Borch T, Wang J, Gao Y. Nano-MoO2 activates peroxymonosulfate for the degradation of PAH derivatives[J]. Water Res., 2021,192116834. doi: 10.1016/j.watres.2021.116834

    12. [12]

      Wang Y W, Yu L, Lou X W. Formation of triple-shelled molybdenumpolydopamine hollow spheres and their conversion into MoO2/carbon composite hollow spheres for lithium-ion batteries[J]. Angew. Chem. Int. Ed., 2016,55(47):14668-14672. doi: 10.1002/anie.201608410

    13. [13]

      Zhao C Y, Kong J H, Yang L P, Yao X Y, Phuaa S L, Lu X H. The dopamine-Mo-Ⅵ complexation-assisted large-scale aqueous synthesis of a single-layer MoS2/carbon sandwich structure for ultrafast, long-life lithium-ion batteries[J]. Chem. Commun., 2014,50(68):9672-9675. doi: 10.1039/C4CC04099F

    14. [14]

      Wu C, Chen Z F, Wang M L, Cao X, Zhang Y, Song P, Zhang T Y, Ye X L, Yang Y, Gu W H, Zhou J D, Huang Y Z. Confining tiny MoO2 clusters into reduced graphene oxide for highly efficient low frequency microwave absorption[J]. Small, 2020,16(30)2001686. doi: 10.1002/smll.202001686

    15. [15]

      Zhang H K, Song X, Zhang J, Liu Y D, Zhao H L, Hu J K, Zhao J H. Performance and mechanism of sycamore flock based biochar in removing oxytetracycline hydrochloride[J]. Bioresour. Technol., 2022,350126884. doi: 10.1016/j.biortech.2022.126884

    16. [16]

      Liu Z, Zhou S F, Xue S J, Guo Z, Li J, Qu K G, Cai W W. Heterointerface-rich Mo2C/MoO2 porous nanorod enables superior alkaline hydrogen evolution[J]. Chem. Eng. J., 2021,421127807. doi: 10.1016/j.cej.2020.127807

    17. [17]

       

    18. [18]

      Foo K Y, Hameed B H. Insights into the modeling of adsorption isotherm systems[J]. Chem. Eng. J., 2010,156(1):2-10. doi: 10.1016/j.cej.2009.09.013

    19. [19]

      Huang Y, Gong Q F, Song X N, Feng K, Nie K Q, Zhao F P, Wang Y Y, Zeng M, Zhong J, Li Y G. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution[J]. ACS Nano, 2016,10(12):11337-11343. doi: 10.1021/acsnano.6b06580

    20. [20]

      Yang L, Chen H, Jia F F, Peng W J, Tian X, Xia L, Wu X Y, Song S X. Emerging hexagonal Mo2C nanosheet with (002) facet exposure and Cu incorporation for peroxymonosulfate activation toward antibiotic degradation[J]. ACS Appl. Mater. Interfaces, 2021,13(12):14342-14354. doi: 10.1021/acsami.1c03601

    21. [21]

       

    22. [22]

      Yao Y, Chen Z A, Yu R H, Chen Q, Zhu J X, Hong X F, Zhou L, Wu J S, Mai L Q. Confining ultrafine MoO2 in a carbon matrix enables hybrid Li ion and Li metal storage[J]. ACS Appl. Mater. Interfaces, 2020,12(36):40648-40654. doi: 10.1021/acsami.0c10833

    23. [23]

      Han X, Gerke C S, Banerjee S, Zubair M, Jiang J J, Bedford N M, Miller E M, Thoi V S. Strategic design of MoO2 nanoparticles supported by carbon nanowires for enhanced electrocatalytic nitrogen reduction[J]. ACS Energy Lett., 2020,5(10):3237-3243. doi: 10.1021/acsenergylett.0c01857

    24. [24]

      Duan X G, Ao Z M, Sun H Q, Indrawirawan S, Wang Y X, Lang J, Liang F L, Zhu Z H, Wang S B. Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis[J]. ACS Appl. Mater. Interfaces, 2015,7(7):4169-4178. doi: 10.1021/am508416n

    25. [25]

      Miao J, Geng W, Alvarez P J J, Long M C. 2D N-doped porous carbon derived from polydopamine-coated graphitic carbon nitride for efficient nonradical activation of peroxymonosulfate[J]. Environ. Sci. Technol., 2020,54(13):8473-8481. doi: 10.1021/acs.est.0c03207

    26. [26]

      Wu Z L, Song W K, Xu X W, Yuan J N, Lv W Y, Yao Y Y. High 1T phase and sulfur vacancies in C-MoS2@Fe induced by ascorbic acid for synergistically enhanced contaminants degradation[J]. Sep. Purif. Technol., 2022,286120511. doi: 10.1016/j.seppur.2022.120511

    27. [27]

      CUI J P, CHEN W X, YU F F, CAO S Y, LÜ W Y, YAO Y Y. Adsorption reduction of hexavalent chromium and co-catalytic degradation of organic pollutants by carbon doped hexagonal boron nitride supported MoS2[J]. Chem. J. Chinese Universities, 2021,42(10):3125-3134.  

    28. [28]

      Li H C, Shan C, Pan B C. Fe(Ⅲ)-doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species[J]. Environ. Sci. Technol., 2018,52(4):2197-2205. doi: 10.1021/acs.est.7b05563

    29. [29]

      Kumar D, Singh M, Ramanan A. Crystallization of Mo-EDTA complex based solids: Molecular insights[J]. J. Mol. Struct., 2012,1030:89-94. doi: 10.1016/j.molstruc.2012.07.024

    30. [30]

      Al-Dalama K, Stanislaus A. Temperature programmed reduction of SiO2-Al2O3 supported Ni, Mo and NiMo catalysts prepared with EDTA[J]. Thermochim. Acta, 2011,520(1/2):67-74.

    31. [31]

      Mamtani K, Jain D, Zemlyanov D, Celik G, Luthman J, Renkes G, Co A C, Ozkan U S. Probing the oxygen reduction reaction active sites over nitrogen-doped carbon nanostructures (CNx) in acidic media using phosphate anion[J]. ACS Catal., 2016,6(10):7249-7259. doi: 10.1021/acscatal.6b01786

    32. [32]

      Liang J, Duan X G, Xu X Y, Chen K X, Zhang Y, Zhao L, Qiu H, Wang S B, Cao X D. Persulfate oxidation of sulfamethoxazole by magnetic iron-char composites via nonradical pathways: Fe? versus surface-mediated electron transfer[J]. Environ. Sci. Technol., 2021,55(14):10077-10086. doi: 10.1021/acs.est.1c01618

    33. [33]

      Nikravesh B, Shomalnasab A, Nayyer A, Aghababaei N, Zarebi R, Ghanbari F. UV/Chlorine process for dye degradation in aqueous solution: mechanism, affecting factors and toxicity evaluation for textile wastewater[J]. J. Environ. Chem. Eng., 2020,8(5)104244. doi: 10.1016/j.jece.2020.104244

    34. [34]

      Hu P D, Long M C. Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications[J]. Appl. Catal. B-Environ., 2016,181:103-117. doi: 10.1016/j.apcatb.2015.07.024

    35. [35]

      Madihi-Bidgoli S, Asadnezhad S, Yaghoot-Nezhad A, Hassani A. Azurobine degradation using Fe2O3@multi-walled carbon nanotube activated peroxymonosulfate (PMS) under UVA-LED irradiation: Performance, mechanism and environmental application[J]. J. Environ. Chem. Eng., 2021,9(6)106660. doi: 10.1016/j.jece.2021.106660

  • 加载中
    1. [1]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    4. [4]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    5. [5]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    11. [11]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    18. [18]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    19. [19]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    20. [20]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

Metrics
  • PDF Downloads(6)
  • Abstract views(1902)
  • HTML views(275)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return